def classyCube(cls, **kwargs): """Doc...""" height = kwargs['height'] if 'height' in kwargs else 2 x = kwargs['x'] if 'x' in kwargs else 0 res = cmds.polyCube(name='classyCube', height=height) cmds.move(x, 20, 0, res[0]) return res
def _create(self, shapeData): point = None count = 0 while True: count += 1 if count > 10000: return False point = shapeData['box'].getRandomPointInside(padding=self._padding) if not cmds.elixirGeneral_PointInsideMesh(mesh=shapeData['name'], point=point): continue if self._padding > 0: cmds.setAttr(self._meshPointNode + '.inPosition', *point, type='double3') closestPoint = cmds.getAttr(self._meshPointNode + '.result.position')[0] dx = (closestPoint[0] - point[0]) dy = (closestPoint[1] - point[1]) dz = (closestPoint[2] - point[2]) dist = math.sqrt(dx*dx + dy*dy + dz*dz) if dist < self._padding: continue break cube = cmds.polyCube(width=self._size, height=self._size, depth=self._size) cmds.move(point[0], point[1], point[2], cube[0], absolute=True) return True
def run(self): """ This method is where your nimble script should be implemented. Prior to Nimble calling this method the class receives the arguments passed through Nimble needed by the your method implementation. """ # Retrieve the arguments passed by Nimble using the fetch method, which includes a default # value to assign if the argument was not specified in the Nimble call sphereCount = self.fetch('count', 6) ringRadius = self.fetch('radius', 10) yOffset = self.fetch('y', 0) # Create the spheres using Maya commands imported through Nimble, which allows this script # to be run flexibly both inside and outside of Maya sphereNames = [] for i in range(sphereCount): result = cmds.sphere() sphereNames.append(result[0]) # Position the sphere in the ring cmds.move( ringRadius*math.cos(2.0*math.pi*i/sphereCount), 0, ringRadius*math.sin(2.0*math.pi*i/sphereCount), result[0]) # Place the spheres within a group node to represent the ring and move the group up the # y-axis by the value specified by the script arguments ringGroupNode = cmds.group(*sphereNames, name='sphereRing1') cmds.move(0, yOffset, 0, ringGroupNode) # Set the results of the script with the put command for returning to the Nimble calling # environment self.put('ringName', ringGroupNode) self.put('sphereNames', sphereNames)
def _handlePerturb(self): """ This perturbs the selected object. """ selectedObjects = cmds.ls(selection=True, long=True) vertsList = [] for object in selectedObjects: totalVerts = cmds.polyEvaluate(object, vertex=True) for number in range(totalVerts): vertsList.append(object + '.vtx[{number}]'.format(number=number)) for vert in vertsList: min = float(self.minInput.displayText()) max = float(self.maxInput.displayText()) randNumX = random.uniform(min, max) randNumY = random.uniform(min, max) randNumZ = random.uniform(min, max) cmds.select(vert, replace=True) cmds.move(randNumX, randNumY, randNumZ, relative=True) cmds.select(selectedObjects, replace=True)
def staticCube(**kwargs): """Doc...""" height = kwargs['height'] if 'height' in kwargs else 2 x = kwargs['x'] if 'x' in kwargs else 0 res = cmds.polyCube(name='staticCube', height=height) cmds.move(x, 30, 0, res[0]) return res
def _makeMolecule(self): #H2O O = cmds.polySphere(r=1, n='O', ax = [0,0,0]); H1 = cmds.polySphere(r=0.8, n='H1', ax=[0,0,0]); H2 = cmds.polySphere(r=0.8, n='H2', ax=[0,0,0]); cmds.move(0.0,0.0,1,H1, r=True) cmds.move(0.0,0.0,-1,H2, r=True) cmds.xform(H1, piv=[0,0,0], ws=True) cmds.xform(H2, piv=[0,0,0], ws=True) cmds.rotate(0,'60',0, H1); #group O, H1, H2 as a water molecule H2O = cmds.group( empty=True, name='H2O' ) cmds.parent(H1,H2,O,H2O) #paint on colors for the water molecule #create red lambert cmds.sets( renderable=True, noSurfaceShader=True, empty=True, name='O_WhiteSG' ) cmds.shadingNode( 'lambert', asShader=True, name='O_White' ) cmds.setAttr( 'O_White.color', 1, 1, 1, type='double3') cmds.connectAttr('O_White.outColor', 'O_WhiteSG.surfaceShader') #create red lambert cmds.sets( renderable=True, noSurfaceShader=True, empty=True, name='H_RedSG' ) cmds.shadingNode( 'lambert', asShader=True, name='H_Red' ) cmds.setAttr( 'H_Red.color', 1, 0, 0, type='double3') cmds.connectAttr('H_Red.outColor', 'H_RedSG.surfaceShader') #assign the material cmds.sets('H1', edit=True, forceElement='H_RedSG') cmds.sets('H2', edit=True, forceElement='H_RedSG') cmds.sets('O', edit=True, forceElement='O_WhiteSG') return H2O
def __call__(self, **kwargs): name = self._name if self._name else 'calledCube' height = kwargs['height'] if 'height' in kwargs else 2 x = kwargs['x'] if 'x' in kwargs else 0 res = cmds.polyCube(name=name, height=height, width=self._width) cmds.move(x, 40, 0, res[0]) return res
def doSingle(): #keyframes a bubble, does NOT use slider r = .1 c = cmds.polySphere(r=r) cmds.setAttr(c[0] + ".visibility", 0) cmds.setKeyframe(time=60) cmds.scale(11, 10, 11) cmds.move(0, 20, 0) cmds.setKeyframe(time=50) cmds.setAttr(c[0] + ".visibility", 1) cmds.rotate(100, 0, 0) cmds.scale(10, 9, 9.5) cmds.setKeyframe(time=40) cmds.move(4, 10, 0) cmds.rotate(60, 0, 0) cmds.setKeyframe(time=30) cmds.move(0, 6, 0) cmds.rotate(0, 0, 0) cmds.setKeyframe(time=20) cmds.move(0, 3, 0) cmds.scale(3, 3, 3) cmds.setKeyframe(time=10) cmds.move(0, 0, 0) cmds.scale(1, .8, 1) cmds.setKeyframe(time=1)
def _handleBubbleButton(self): """ This callback creates a polygonal sphere in the Maya scene. it then translates it. """ decRange = np.arange(-1,1,.1) decRange2 = np.arange(0,1,.1) r = 2 a = 2.0*r y = (0, 1, 0) # y up c = cmds.polySphere( r=r, sx=10, sy=10, ax=y, cuv=2, ch=1, n='Bubble')[0] cmds.select(c) cmd.setKeyframe() cmd.setKeyframe() for i in range(1,300,5): x = rand.choice(decRange) y = 5*rand.choice(decRange2) z = rand.choice(decRange) cmd.currentTime(i) cmd.move(x,y,z,r=True) cmd.setKeyframe() response = nimble.createRemoteResponse(globals()) response.put('name', c)
def _createGeometry(self, name): ''' #create tibia self.tibia = mc.polyCube(sx=1, sy=1, sz=1, w=2,h=50, d=2, n=name+'_tibia')[0] mc.move(0,28,-12) self.knee = mc.polyCylinder(h=5,r=2,n=name+'_knee')[0] mc.move(0,54,-12,r=True) mc.rotate(0,0,'90deg') self.tibia = mc.polyUnite(self.tibia,self.knee, n=name+'_tibia')[0] mc.move(0,54,-12, self.tibia+".scalePivot", self.tibia+".rotatePivot") #create feamer self.femur = mc.polyCube(sx=1, sy=1, sz=1, w=3,h=50, d=3, n=name+'_feamer')[0] mc.move(0,80,-12) self.hip = mc.polySphere(r=5,n=name+'_hip') mc.move(0,107,-12) self.femur = mc.polyUnite(self.femur,self.hip, n=name+'_femur')[0] mc.move(0,107,-12, self.femur+".scalePivot", self.femur+".rotatePivot") pass ''' self.spine = mc.polyCylinder(h=75, r=2, n=name + '_spine')[0] mc.move(0, 30, 0) self.pelvic = mc.polyCylinder(h=40, r=2, n=name + '_pelvic')[0] mc.rotate(0, 0, '90deg') self.clavical = mc.polyCylinder(h=56, r=2, n=name + '_clavical')[0] mc.rotate(0, 0, '90deg') mc.move(0, 67, 0) #self.hip = mc.polySphere(r=5,n=name+'_hip') self.torso = mc.polyUnite(self.spine, self.pelvic, n=name)[0]
def plieHalf(self, start, end): if (self.gundamIns.currentFeet != "first"): moveFeetFirst(self.gundamIns) self.gundamIns.currentFeet = "first" mc.setKeyframe(self.gundamIns.torso.h_hips, self.gundamIns.leftLeg.h_foot, self.gundamIns.rightLeg.h_foot, self.gundamIns.torso.h_shoulders, self.gundamIns.rightArm.h_hand, self.gundamIns.leftArm.h_hand, t=self.start) mc.select(self.gundamIns.torso.h_hips, self.gundamIns.torso.h_shoulders, self.gundamIns.rightArm.h_hand, self.gundamIns.leftArm.h_hand) currentY = mc.getAttr(".translateY") print((self.start)) mc.move(0, -31, 0, r=True) mc.select(cl=True) #mc.currentTime((end-start)*2/2) mc.setKeyframe(self.gundamIns.torso.h_hips, self.gundamIns.leftLeg.h_foot, self.gundamIns.rightLeg.h_foot, self.gundamIns.torso.h_shoulders, self.gundamIns.rightArm.h_hand, self.gundamIns.leftArm.h_hand, t=self.end) mc.select(self.gundamIns.torso.h_hips, self.gundamIns.torso.h_shoulders, self.gundamIns.rightArm.h_hand, self.gundamIns.leftArm.h_hand) mc.select(cl=True) print(self.end)
def doMulti(time): for i in range(0, time / 2): #makes time/2 bubbles and sets up a bunch of random stats for them initTime = randint(0, time - 30) initX = randint(-10, 10) initZ = randint(-10, 10) xRand = randint(-5, 5) zRand = randint(-5, 5) #keyframes all the bubbles based on time that user sets in Qt slider r = .1 c = cmds.polySphere(r=r) cmds.setAttr(c[0] + ".visibility", 0) cmds.setKeyframe(time=initTime + 60) cmds.scale(11, 10, 11) cmds.move(initX, 20, initZ) cmds.setKeyframe(time=initTime + 50) cmds.setAttr(c[0] + ".visibility", 1) cmds.rotate(100, 0, 0) cmds.scale(10, 9, 9.5) cmds.setKeyframe(time=initTime + 40) cmds.move(initX + xRand, 10, initZ + zRand) cmds.rotate(60, 0, 0) cmds.setKeyframe(time=initTime + 30) cmds.move(initX, 6, initZ) cmds.rotate(0, 0, 0) cmds.setKeyframe(time=initTime + 20) cmds.move(initX, 3, initZ) cmds.scale(3, 3, 3) cmds.setKeyframe(time=initTime + 10) cmds.move(initX, 0, initZ) cmds.scale(1, .8, 1) cmds.setKeyframe(time=initTime)
def _handleExampleButton(self): time = 120 d = cmds.polyCylinder(r=15, h=20, sx=40, sy=10, sz=1, ax=(0, 0, 0), rcp=0, cuv=2, ch=1, n='CylinderContainer')[0] cmds.move(0, 10, 0) cmds.select(d) response = nimble.createRemoteResponse(globals()) response.put('name', d) num = self.NumBubbles.value() bubble = "bubble" for i in range(num): randomX = random.randrange(-10, 10) randomY = random.randrange(1, 2) randomZ = random.randrange(-10, 10) circleShape(randomX, randomY, randomZ, bubble, 1, None, time) bubble = "bubble" + str(i)
def _handleInit(self): floor = mc.polyPlane(w=600,h=600) mc.move(0,-5,0) mc.ambientLight() mc.pointLight() mc.move(600,600,600)
def createRing(name, index): cmds.polyCylinder(r=1.288, sx=48, n=fn('cyl', index)) cmds.polyTorus(n=fn('torus', index), sx=48, sy=24) cmds.polyBoolOp(fn('torus', index), fn('cyl', index), op=2, n=fn(name, index)) cmds.move(.407, y=True)
def instanceCube(self, **kwargs): """Doc...""" name = self._name if self._name else 'instanceCube' height = kwargs['height'] if 'height' in kwargs else 2 x = kwargs['x'] if 'x' in kwargs else 0 res = cmds.polyCube(name=name, height=height, width=self._width) cmds.move(x, 10, 0, res[0]) return res
def createBubble(tx, tz, name): """ :param tx: translate x value :param tz: translate z value :param name: string name of bubble :return: nothing """ cmds.polySphere(sx=15, sy=15, r=.1, n=name) cmds.move(tx,0,tz, name, absolute=True)
def _handleDefendButton(self): #driven: all arms and joint; driver: the translateX of the ball self._rightArmDrivenKeyframe() #set the new values cmds.move( -2.5, 0, 0, 'ball', relative=True) cmds.rotate('0', '-72', '0', 'SF|RShoulderJoint|RightArm') cmds.rotate('0', '0', '53', 'SF|RShoulderJoint|RightArm|RHandJoint|RHand') #reset driven: all arms and joint; driver: the translateX of the ball self._rightArmDrivenKeyframe()
def doSecond(): filePath = "C:/Users/Kyle/Downloads/x_wing/x_wing.mb" cmds.file(filePath, type='mayaBinary', ra=True, mergeNamespacesOnClash=False, namespace='x_wing', i=True ) cmds.select('x_wing:polySurface3') cmds.scale(.1,.1,.1) cmds.move(0,10,10) cmds.setKeyframe(time=1) cmds.move(0,10,-10) cmds.setKeyframe(time=120)
def createBar(name, index): ## actual standard gold bar dimensions (inches) y = 1.75 x = 7. z = 3.63 cmds.polyCube(h=y, w=x, d=z, n=fn(name, index)) cmds.scale(.94, .9, fn(name, index) + '.f[1]', xz=True) cmds.move(y / 4 + .001, y=True, relative=True) cmds.scale(.5, .5, .5) cmds.polyBevel(fn(name, index), o=.07, sg=12)
def handleSchnauzDownBtn(self): global schnauzActAmt global incAmt btmCapAmt = 0.000 cmds.select("schnauzClusterHandle") schnauzActAmt -= incAmt if schnauzActAmt >= btmCapAmt: print schnauzActAmt cmds.move(0, schnauzActAmt, 0) else: schnauzActAmt = btmCapAmt
def handleSchnauzUpBtn(self): global schnauzActAmt global incAmt topCapAmt = 0.028 cmds.select('schnauzClusterHandle') schnauzActAmt += incAmt if schnauzActAmt <= topCapAmt: print schnauzActAmt cmds.move(0, schnauzActAmt, 0) else: schnauzActAmt = topCapAmt
def handleDownBtn(self): global smileActAmt global incAmt btmCapAmt = -0.032 cmds.select('smileClusterHandle') smileActAmt -= incAmt if smileActAmt >= btmCapAmt: print smileActAmt cmds.move(0, smileActAmt, 0) else: smileActAmt = btmCapAmt
def handleEyebrowsDwnBtn(self): global eyebrowsActAmt global eyebrowsIncAmt btmCapAmt = -0.014 cmds.select('eyebrowsClusterHandle') eyebrowsActAmt -= eyebrowsIncAmt if eyebrowsActAmt >= btmCapAmt: print eyebrowsActAmt cmds.move(0, eyebrowsActAmt, 0) else: eyebrowsActAmt = btmCapAmt
def handleDownBtn(self): global smileActAmt global incAmt btmCapAmt = -0.032 cmds.select("smileClusterHandle") smileActAmt -= incAmt if smileActAmt >= btmCapAmt: print smileActAmt cmds.move(0, smileActAmt, 0) else: smileActAmt = btmCapAmt
def handleUpBtn(self): global smileActAmt global incAmt topCapAmt = 0.016 cmds.select('smileClusterHandle') smileActAmt += incAmt if smileActAmt <= topCapAmt: print smileActAmt cmds.move(0, smileActAmt, 0) else: smileActAmt = topCapAmt
def handleEyebrowsDwnBtn(self): global eyebrowsActAmt global eyebrowsIncAmt btmCapAmt = -0.014 cmds.select("eyebrowsClusterHandle") eyebrowsActAmt -= eyebrowsIncAmt if eyebrowsActAmt >= btmCapAmt: print eyebrowsActAmt cmds.move(0, eyebrowsActAmt, 0) else: eyebrowsActAmt = btmCapAmt
def handleEyebrowsUpBtn(self): global eyebrowsActAmt global eyebrowsIncAmt topCapAmt = 0.021 cmds.select("eyebrowsClusterHandle") eyebrowsActAmt += eyebrowsIncAmt if eyebrowsActAmt <= topCapAmt: print eyebrowsActAmt cmds.move(0, eyebrowsActAmt, 0) else: eyebrowsActAmt = topCapAmt
def handleUpBtn(self): global smileActAmt global incAmt topCapAmt = 0.016 cmds.select("smileClusterHandle") smileActAmt += incAmt if smileActAmt <= topCapAmt: print smileActAmt cmds.move(0, smileActAmt, 0) else: smileActAmt = topCapAmt
def handleEyebrowsUpBtn(self): global eyebrowsActAmt global eyebrowsIncAmt topCapAmt = 0.021 cmds.select('eyebrowsClusterHandle') eyebrowsActAmt += eyebrowsIncAmt if eyebrowsActAmt <= topCapAmt: print eyebrowsActAmt cmds.move(0, eyebrowsActAmt, 0) else: eyebrowsActAmt = topCapAmt
def handleSchnauzDownBtn(self): global schnauzActAmt global incAmt btmCapAmt = 0.000 cmds.select('schnauzClusterHandle') schnauzActAmt -= incAmt if schnauzActAmt >= btmCapAmt: print schnauzActAmt cmds.move(0, schnauzActAmt, 0) else: schnauzActAmt = btmCapAmt
def handleSchnauzUpBtn(self): global schnauzActAmt global incAmt topCapAmt = 0.028 cmds.select("schnauzClusterHandle") schnauzActAmt += incAmt if schnauzActAmt <= topCapAmt: print schnauzActAmt cmds.move(0, schnauzActAmt, 0) else: schnauzActAmt = topCapAmt
def MoveVertex(min, max): cmds.select(ado=True) selected = cmds.ls(selection=True, long=True) for object in selected: total = cmds.polyEvaluate(object, vertex=True) for i in range(total): randNumX = random.uniform(min, max) randNumY = random.uniform(min, max) randNumZ = random.uniform(min, max) vertex = object+'.vtx['+str(i)+']' cmds.select(vertex) cmds.move(randNumX, randNumY, randNumZ, relative=True)
def _handleSphereButton(self): """ This callback creates a polygonal sphere in the Maya scene. it then translates it. """ r = 2 a = 2.0*r y = (0, 1, 0) # y up c = cmds.polySphere( r=r, sx=10, sy=10, ax=y, cuv=2, ch=1, n='Bubble')[0] cmds.select(c) cmd.move(0, 5, 0, r = True) response = nimble.createRemoteResponse(globals()) response.put('name', c)
def handleBallBtn(self): cmds.select('ball') cmds.currentTime(74) cmds.setKeyframe('ball') cmds.currentTime(112) cmds.move(-0.757, 6.434, 15.831) cmds.rotate(9.208, 17.386, -368.887) cmds.setKeyframe('ball') cmds.currentTime(144) cmds.move(-0.772, 0.637, 22.462) cmds.rotate(9.208, 17.386, -368.887) cmds.setKeyframe('ball')
def _handleGoButton(self): start = self.rangeStartSlide.value() #get user-def range start end = self.rangeEndSlide.value() #get user-def range end selObj = cmds.ls(sl=True)[0] #Get selected object numVerts = cmds.polyEvaluate(selObj, v=True) #-----For each vertex...------ for i in range(numVerts): pos = cmds.pointPosition(selObj+'.vtx['+str(i)+']') randX = random.randrange(start,end) randY = random.randrange(start,end) randZ = random.randrange(start,end) cmds.move(randX, randY, randZ, selObj+'.vtx['+str(i)+']', r=True) print cmds.pointPosition(selObj+'.vtx['+str(i)+']')
def MoveVertex(min, max): cmds.select(ado=True) selected = cmds.ls(selection=True, long=True) for object in selected: total = cmds.polyEvaluate(object, vertex=True) for i in range(total): randNumX = random.uniform(min, max) randNumY = random.uniform(min, max) randNumZ = random.uniform(min, max) vertex = object + '.vtx[' + str(i) + ']' cmds.select(vertex) cmds.move(randNumX, randNumY, randNumZ, relative=True)
def _handleRoadButton(self): exist = cmds.ls('road') if(len(exist) != 0): cmds.delete('road') road=cmds.group(empty=True, name='road') transformName = cmds.ls('brick', typ='transform')[0] num = int(self.bricksNum.text()) for i in range(0, num): instanceResult = cmds.instance(transformName, name=transformName + '_instance#') #print 'instanceResult: ' + str(instanceResult) x = random.uniform(-3, 34) z = random.uniform(-3,3) cmds.move(x, 0, z, instanceResult) yRot = random.uniform(0,360) cmds.rotate(0, yRot, 0, instanceResult) cmds.parent(instanceResult, road)
def _duplicate(self): #set the random seed random.seed(1024) for i in range (0, 100): cmds.duplicate('H2O') #let the instances rotate objName='H2O' + str(i+1) #random place x = random.uniform(-30,30) y = random.uniform(0, 40) z = random.uniform(-30, 30) cmds.move(x, y, z, objName) #random rotate xRot=random.uniform(0, 360) yRot=random.uniform(0, 360) zRot=random.uniform(0, 360) cmds.rotate(xRot, yRot, zRot, objName)
def _createJoints(self, name): #bone mc.select(cl=True) self.j_root = mc.joint(p=(0, 0, 0), n=name + '_j_root') self.j_s1 = mc.joint(p=(0, 11, 1), n=name + '_j_s1') self.j_s2 = mc.joint(p=(0, 22, 1), n=name + '_j_s2') self.j_s3 = mc.joint(p=(0, 33, 1), n=name + '_j_s3') self.j_s4 = mc.joint(p=(0, 44, 1), n=name + '_j_s4') self.j_s5 = mc.joint(p=(0, 55, 1), n=name + '_j_s5') self.j_neck = mc.joint(p=(0, 67, 0), n=name + '_j_neck') mc.select(cl=True) self.j_bind_root = mc.joint(p=(0, 0, 0), n=name + '_j_bind_root') mc.select(cl=True) self.j_bind_neck = mc.joint(p=(0, 67, 0), n=name + '_j_bind_neck') #mc.parent(self.j_bind_root, self.j_root) #mc.parent(self.j_bind_neck, self.j_neck) self.h_hips = mc.circle(nr=(0, 1, 0), c=(0, 0, 0), r=50, n=name + "_hips_IK_handle")[0] self.h_shoulders = mc.circle(nr=(0, 1, 0), c=(0, 67, 0), r=70, n=name + "_shoulders_IK_handle")[0] mc.move(0, 67, 0, self.h_shoulders + ".scalePivot", self.h_shoulders + ".rotatePivot") mc.parentConstraint(self.h_hips, self.j_bind_root, mo=True) mc.parentConstraint(self.h_shoulders, self.j_bind_neck, mo=True) #mc.parent(self.h_hips, self.torso) #mc.parent(self.h_shoulders, self.torso) mc.parent(self.torso, self.j_root) mc.parent(self.clavical, self.j_neck) mc.parent(self.cockpit, self.j_s3) mc.parent(self.chest, self.j_s5) pass
def _handleDuplicatedButton(self): random.seed(1234) exist = cmds.ls('dust') if(len(exist) != 0): cmds.delete('dust') dust=cmds.group(empty=True, name='dust') transformName = cmds.ls('pie', typ='transform')[0] num = int(self.dustNum.text()) for i in range(0, num): instanceResult = cmds.instance(transformName, name=transformName + '_instance#') #print 'instanceResult: ' + str(instanceResult) x = random.uniform(-3, 34) y = random.uniform(0,4) z = random.uniform(-3,3) cmds.move(x, y, z, instanceResult) xRot = random.uniform(0,360) yRot = random.uniform(0,360) zRot = random.uniform(0,360) cmds.rotate(xRot, yRot, zRot, instanceResult) cmds.parent(instanceResult, dust)
def createRenderEnvironment(self): lightName = 'scenic_light1' if not cmds.objExists(lightName): lightName = cmds.directionalLight(name=lightName, intensity=0.5) cmds.move(0, 2500, 0, lightName) cmds.rotate('-45deg', '-45deg', 0, lightName) lightName = 'scenic_light2' if not cmds.objExists(lightName): lightName = cmds.directionalLight(name=lightName, intensity=0.5) cmds.move(0, 2500, 0, lightName) cmds.rotate('-45deg', '135deg', 0, lightName) floorName = 'floor' if not cmds.objExists(floorName): floorName = cmds.polyPlane(width=10000, height=10000, name=floorName)[0] shader, shaderEngine = self.createShader('Whiteout_Surface', 'surfaceShader') cmds.setAttr(shader + '.outColor', 1.0, 1.0, 1.0, type='double3') cmds.select([floorName]) cmds.sets(forceElement=shaderEngine)
def drawBubble(radius, xpoint, ypoint, zpoint, name, time): """ Arguments: radius is the size of the overall shape Return: None """ y = (0, 1, 0) d = cmds.polyCylinder(r=10, h=20, sx=40, sy=10, sz=1, ax=(0, 0, 0), rcp=0, cuv=2, ch=1, n='CylinderContainer')[0] cmds.move(0, 10, 0) cmds.select(d) response = nimble.createRemoteResponse(globals()) response.put('name', d) c = cmds.polySphere(r=radius, ax=y, cuv=2, ch=1, n=name)[0] xpoint = 0 for i in range(1, time + 1, 3): # figure out best time step cmds.setKeyframe(name, t=i) cmds.move(xpoint, ypoint, zpoint, relative=False) cmds.select(name) response = nimble.createRemoteResponse(globals()) response.put('name', name) xpoint = xpoint + .1 # need to do some physics for theses print(ypoint, i) if ypoint >= 19.5: ypoint = 20 print("pop") break else: ypoint = (.55 + float(ypoint)) zpoint = zpoint + .001 #cmds.setKeyframe( name , at="translateY", t=time, v=xpoint + 3) return None
def main(bubbleQuantity, allAtts): for i in range(bubbleQuantity): # create 50 bubbles name = 'bubble' + str(i) # name them sequentially """ first -- a random integer between 1 and 50 which represents the keyframe in which a bubble is generated """ first = random.randint(1,300) last = first + 66 # all bubbles take 66 keyframes to rise x = 10 - random.random()*20 # this makes x values in the range [-10.0,10.0] z = 10 - random.random()*20 # this makes z values in the range [-10.0,10.0] createBubble(x,z,name) cmds.currentTime(first) cmds.setKeyframe( name, v=1, at='visibility' ) cmds.setKeyframe(name) cmds.currentTime(last) ############ keyframe all attributes ############ if allAtts: cmds.scale(10,10,10, name) cmds.move(0, 20, 0, name, relative=True) cmds.setKeyframe() ################################################# ####### keyframe only necessary attributes ###### else: cmds.setKeyframe( name, v=10, at='scaleX' ) cmds.setKeyframe( name, v=10, at='scaleY' ) cmds.setKeyframe( name, v=10, at='scaleZ' ) cmds.setKeyframe( name, v=10, at='translateY' ) ################################################# cmds.currentTime(last + 1) cmds.setKeyframe( name, v=0, at='visibility' ) cmds.currentTime(1)
def initializeCadenceCam(self): """ This creates an orthographic camera that looks down the Y axis onto the XZ plane, and rotated so that the AI file track labels are legible. This camera is positioned so that the given track nodeName is centered in its field by setCameraFocus. """ if cmds.objExists(self.CADENCE_CAM): return priorSelection = MayaUtils.getSelectedTransforms() c = cmds.camera( orthographic=True, nearClipPlane=1, farClipPlane=100000, orthographicWidth=400) cmds.setAttr(c[0] + '.visibility', False) cmds.rename(c[0], self.CADENCE_CAM) cmds.rotate(-90, 180, 0) cmds.move(0, 100, 0, self.CADENCE_CAM, absolute=True) MayaUtils.setSelection(priorSelection)
def _handlePerturb(self): """ This perturbs the selected object. """ selectedObjects = cmds.ls(selection=True, long=True) vertsList = [] for object in selectedObjects: totalVerts = cmds.polyEvaluate(object, vertex=True) for number in range(totalVerts): vertsList.append(object+'.vtx[{number}]'.format(number=number)) for vert in vertsList: min = float(self.minInput.displayText()) max = float(self.maxInput.displayText()) randNumX = random.uniform(min, max) randNumY = random.uniform(min, max) randNumZ = random.uniform(min, max) cmds.select(vert, replace=True) cmds.move(randNumX, randNumY, randNumZ, relative=True) cmds.select(selectedObjects, replace=True)
def createToken(cls, uid, props, trackSetNode =None): """ A token is created, provided with some additional Maya attributes, and placed in the scene. Tokens are functtionally similar to TrackNodes, but with different shapes and attributes. """ cylinderHeight = 5.0 coneHeight = 10.0 if not trackSetNode: trackSetNode = TrackSceneUtils.getTrackSetNode() if not trackSetNode: return None node = cls.getTrackNode(uid, trackSetNode=trackSetNode) if node: return node # determine whether left or right, and manus or pes, from name name = props['name'] if props else None if not name: print('createToken: No properties specified') return # remove '_proxy' or '_token' if present (as in S6_LP3_proxy) nameFields = cls.decomposeName(name.split('_')[0]) isLeft = nameFields['left'] isPes = nameFields['pes'] # make a cone for the token of an proxy else a cylinder if uid.endswith('_proxy'): node = cmds.polyCone( radius=0.5, height=coneHeight, subdivisionsX=10, subdivisionsY=1, subdivisionsZ=1, axis=(0, 1, 0), createUVs=0, constructionHistory=0, name='Token_0')[0] cmds.move(0, 0.5 * coneHeight, 0) else: node = cmds.polyCylinder( radius=0.5, height=cylinderHeight, subdivisionsX=10, subdivisionsY=1, subdivisionsZ=1, subdivisionsCaps=0, axis=(0, 1, 0), createUVs=0, constructionHistory=0, name='Token_0')[0] cmds.move(0, 0.5 * cylinderHeight, 0) # Set up the basic cadence attributes cmds.addAttr(longName='cadence_dx', shortName='dx', niceName='DX') cmds.addAttr(longName='cadence_dy', shortName='dy', niceName='DY') cmds.addAttr( longName='cadence_uniqueId', shortName='track_uid', dataType='string', niceName='UID') cmds.addAttr( longName='cadence_name', shortName='token_name', dataType='string', niceName='Name') # Disable some transform attributes cmds.setAttr(node + '.rotateX', lock=True) cmds.setAttr(node + '.rotateZ', lock=True) cmds.setAttr(node + '.scaleY', lock=True) cmds.setAttr(node + '.translateY', lock=True) # Scale the cylinder/cone in x and z to represent 'dy' and 'dx' in # centimeters. There is a change of coordinates between Maya (X, Z) and # the simulator (X, Y) space. For example, for the right manus: # x = int(100*float(entry['rm_y'])) # z = int(100*float(entry['rm_x'])) # and likewise for dx and dy. # the DX and DY attributes affect scaleZ and scaleX in the node cmds.connectAttr(node + '.dx', node + '.scaleZ') cmds.connectAttr(node + '.dy', node + '.scaleX') # add a short annotation based on the name annotation = cmds.annotate(node, text=cls.shortName(props['name'])) cmds.select(annotation) aTransform = cmds.pickWalk(direction='up')[0] # control it's position by that of the node, so that it stays 15 cm # above the pes and 10 cm above the manus if isPes: cmds.move(0.0, 15.0, 0.0, aTransform) else: cmds.move(0.0, 10.0, 0.0, aTransform) cmds.connectAttr(node + '.translateX', aTransform + '.translateX') cmds.connectAttr(node + '.translateZ', aTransform + '.translateZ') # and make it non-selectable cmds.setAttr(aTransform + '.overrideEnabled', 1) cmds.setAttr(aTransform + '.overrideDisplayType', 2) cmds.rename(aTransform, "TokenAnnotation_0") if isPes: if isLeft: color = TrackwayShaderConfig.LEFT_PES_TOKEN_COLOR else: color = TrackwayShaderConfig.RIGHT_PES_TOKEN_COLOR else: if isLeft: color = TrackwayShaderConfig.LEFT_MANUS_TOKEN_COLOR else: color = TrackwayShaderConfig.RIGHT_MANUS_TOKEN_COLOR ShadingUtils.applyShader(color, node) cmds.select(node) # add the new node to the Cadence track set cmds.sets(node, add=trackSetNode) # finally, initialize all the properties from the dictionary props cls.setTokenProps(node, props) return node
def createTrackNode(cls, uid, trackSetNode =None, props =None): """ A track node consists of a triangular pointer (left = red, right = green) which is selectable but only allows rotateY, translateX, and translateZ. The node has a child, a transform called inverter, which serves to counteract the scaling in x and z that is applied to the triangular node. There are two orthogonal rulers (width and length). Width and length uncertainty is represented by rectangular bars at the ends of the rulers. In Maya one can directly adjust track position (translateX and translateZ) and orientation (rotationY); other attributes are adjusted only through the UI. """ if not trackSetNode: trackSetNode = TrackSceneUtils.getTrackSetNode() if not trackSetNode: return None node = cls.getTrackNode(uid, trackSetNode=trackSetNode) if node: return node # Set up dimensional constants for the track node nodeThickness = 1.0 thetaBreadth = 0.1 thetaThickness = 0.5 barBreadth = 2.0 barThickness = 0.5 rulerBreadth = 1.0 rulerThickness = 0.25 epsilon = 1.0 # Create an isoceles triangle pointer, with base aligned with X, and # scaled by node.width. The midpoint of the base is centered on the # 'track center' and the altitude extends from that center of the track # 'anteriorly' to the perimeter of the track's profile (if present, else # estimated). The node is scaled longitudinally (in z) based on the # distance zN (the 'anterior' length of the track, in cm). The triangle # is initially 1 cm on a side. sideLength = 1.0 node = cmds.polyPrism( length=nodeThickness, sideLength=sideLength, numberOfSides=3, subdivisionsHeight=1, subdivisionsCaps=0, axis=(0, 1, 0), createUVs=0, constructionHistory=0, name='Track0')[0] # Point the triangle down the +Z axis cmds.rotate(0.0, -90.0, 0.0) # push it down below ground level so that the two rulers are just # submerged, and scale the triangle in Z to match its width (1 cm) so it # is ready to be scaled cmds.move(0, -(nodeThickness/2.0 + rulerThickness), math.sqrt(3.0)/6.0) # move the node's pivot to the 'base' of the triangle so it scales # outward from that point cmds.move( 0, 0, 0, node + ".scalePivot", node + ".rotatePivot", absolute=True) cmds.scale(2.0/math.sqrt(3.0), 1.0, 100.0) cmds.makeIdentity( apply=True, translate=True, rotate=True, scale=True, normal=False) # Set up the cadence attributes cmds.addAttr( longName='cadence_width', shortName=TrackPropEnum.WIDTH.maya, niceName='Width') cmds.addAttr( longName='cadence_widthUncertainty', shortName=TrackPropEnum.WIDTH_UNCERTAINTY.maya, niceName='Width Uncertainty') cmds.addAttr( longName='cadence_length', shortName=TrackPropEnum.LENGTH.maya, niceName='Length') cmds.addAttr( longName='cadence_lengthUncertainty', shortName=TrackPropEnum.LENGTH_UNCERTAINTY.maya, niceName='Length Uncertainty') cmds.addAttr( longName='cadence_lengthRatio', shortName=TrackPropEnum.LENGTH_RATIO.maya, niceName='Length Ratio') cmds.addAttr( longName='cadence_rotationUncertainty', shortName=TrackPropEnum.ROTATION_UNCERTAINTY.maya, niceName='Rotation Uncertainty') cmds.addAttr( longName='cadence_uniqueId', shortName=TrackPropEnum.UID.maya, dataType='string', niceName='Unique ID') # Construct a ruler representing track width, then push it down just # below ground level, and ake it non-selectable. Drive its scale by the # node's width attribute. widthRuler = cmds.polyCube( axis=(0, 1, 0), width=100.0, height=rulerThickness, depth=rulerBreadth, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='WidthRuler')[0] # Push it down to just rest on the triangular node (which is already # submerged by the thickness of the ruler and half the node thickness. cmds.move(0.0, -rulerThickness/2.0, 0.0) cmds.setAttr(widthRuler + '.overrideEnabled', 1) cmds.setAttr(widthRuler + '.overrideDisplayType', 2) # Construct a ruler representing track length and push it down the same # as the width ruler, and make it non-selectable. Its length will be # driven by the node's length attribute. lengthRuler = cmds.polyCube( axis=(0, 1, 0), width=rulerBreadth, height=rulerThickness, depth=100.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='LengthRuler')[0] cmds.move(0.0, -rulerThickness/2.0, 0.0) cmds.setAttr(lengthRuler + '.overrideEnabled', 1) cmds.setAttr(lengthRuler + '.overrideDisplayType', 2) # Now construct 'error bars' to the North, South, West, and East of the # node, to visualize uncertainty in width (West and East bars) and # length (North and South bars), and push them just below ground level, # and make them non-selectable. barN = cmds.polyCube( axis=(0,1,0), width=barBreadth, height=barThickness, depth=100.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='BarN')[0] cmds.move(0, -(barThickness/2 + rulerThickness), 0) cmds.setAttr(barN + '.overrideEnabled', 1) cmds.setAttr(barN + '.overrideDisplayType', 2) barS = cmds.polyCube( axis=(0, 1, 0), width=barBreadth, height=barThickness, depth=100.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='BarS')[0] cmds.move(0, -(barThickness/2 + rulerThickness), 0) cmds.setAttr(barS + '.overrideEnabled', 1) cmds.setAttr(barS + '.overrideDisplayType', 2) barW = cmds.polyCube( axis=(0, 1, 0), width=100.0, height=barThickness, depth=barBreadth, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='BarW')[0] cmds.move(0, -(barThickness/2 + rulerThickness), 0) cmds.setAttr(barW + '.overrideEnabled', 1) cmds.setAttr(barW + '.overrideDisplayType', 2) barE = cmds.polyCube( axis=(0, 1, 0), width=100.0, height=barThickness, depth=barBreadth, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='BarE')[0] cmds.move(0, -(barThickness/2 + rulerThickness), 0) cmds.setAttr(barE + '.overrideEnabled', 1) cmds.setAttr(barE + '.overrideDisplayType', 2) # Create two diverging lines that indicate rotation uncertainty (plus # and minus), with their pivots placed so they extend from the node # center, and each is made non-selectable. First make the indicator of # maximum (counterclockwise) estimated track rotation thetaPlus = cmds.polyCube( axis=(0, 1, 0), width=thetaBreadth, height=thetaThickness, depth=1.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='ThetaPlus')[0] cmds.setAttr(thetaPlus + '.overrideEnabled', 1) cmds.setAttr(thetaPlus + '.overrideDisplayType', 2) # Next, construct the indicator of the minimum (clockwise) estimate of # track rotation thetaMinus = cmds.polyCube( axis=(0, 1, 0), width=thetaBreadth, height=thetaThickness, depth=1.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='ThetaMinus')[0] cmds.setAttr(thetaMinus + '.overrideEnabled', 1) cmds.setAttr(thetaMinus + '.overrideDisplayType', 2) # The two width 'error bars' will be translated outward from the node # center. First, the width attribute is converted from meters (as it # comes from the database) to centimeters; the computation is available # in the output of the node 'width'. width = cmds.createNode('multiplyDivide', name='width') cmds.setAttr(width + '.operation', 1) cmds.setAttr(width + '.input1X', 100.0) cmds.connectAttr( node + '.' + TrackPropEnum.WIDTH.maya, width + '.input2X') # Translate barW in x by width/2.0; output is in xW.outputX xW = cmds.createNode('multiplyDivide', name = 'xW') cmds.setAttr(xW + '.operation', 2) cmds.connectAttr(width + '.outputX', xW + '.input1X') cmds.setAttr(xW + '.input2X', 2.0) cmds.connectAttr(xW + '.outputX', barW + '.translateX') # Translate barE in x by -width/2.0; output is in xE.outputX xE = cmds.createNode('multiplyDivide', name = 'xE') cmds.setAttr(xE + '.operation', 2) # division operation cmds.connectAttr(width + '.outputX', xE + '.input1X') cmds.setAttr(xE + '.input2X', -2.0) cmds.connectAttr(xE + '.outputX', barE + '.translateX') # Now regarding length, first convert the node.length attribute from # meters to centimeters. This computation is available in the output of # the node 'length' length = cmds.createNode('multiplyDivide', name='length') cmds.setAttr(length + '.operation', 1) cmds.setAttr(length + '.input1X', 100.0) cmds.connectAttr( node + '.' + TrackPropEnum.LENGTH.maya, length + '.input2X') # scale thetaPlus and thetaMinus by length (since they are 1 cm, # multiply by length in cm) cmds.connectAttr(length + '.outputX', thetaPlus + '.scaleZ') cmds.connectAttr(length + '.outputX', thetaMinus + '.scaleZ') # Then barN is translated forward in z by zN = lengthRatio*length # (centimeters) zN = cmds.createNode('multiplyDivide', name='zN') cmds.setAttr(zN + '.operation', 1) cmds.connectAttr( node + '.' + TrackPropEnum.LENGTH_RATIO.maya, zN + '.input1X') cmds.connectAttr(length + '.outputX', zN + '.input2X') cmds.connectAttr(zN + '.outputX', barN + '.translateZ') # Next, translate barS backward in z by (zN - length); output is in # zS.output1D zS = cmds.createNode('plusMinusAverage', name='sZ') cmds.setAttr(zS + '.operation', 2) cmds.connectAttr(zN + '.outputX', zS + '.input1D[0]') cmds.connectAttr(length + '.outputX', zS + '.input1D[1]') cmds.connectAttr(zS + '.output1D', barS + '.translateZ') # Next, compute the half length, hl = length/2.0 (centimeters) hl = cmds.createNode('multiplyDivide', name='hl') cmds.setAttr(hl + '.operation', 2) cmds.connectAttr(length + '.outputX', hl + '.input1X') cmds.setAttr(hl + '.input2X', 2.0) # Translate lengthRuler along z by zL = (zN - hl) (centimeters) zL = cmds.createNode('plusMinusAverage', name='zL') cmds.setAttr(zL + '.operation', 2) cmds.connectAttr(zN + '.outputX', zL + '.input1D[0]') cmds.connectAttr(hl + '.outputX', zL + '.input1D[1]') cmds.connectAttr(zL + '.output1D', lengthRuler + '.translateZ') # Scale the four 'error bars' to represent the width and length # uncertainties (centimeters) cmds.connectAttr( node + "." + TrackPropEnum.WIDTH_UNCERTAINTY.maya, barW + '.scaleX') cmds.connectAttr( node + "." + TrackPropEnum.WIDTH_UNCERTAINTY.maya, barE + '.scaleX') cmds.connectAttr( node + "." + TrackPropEnum.LENGTH_UNCERTAINTY.maya, barN + '.scaleZ') cmds.connectAttr( node + "." + TrackPropEnum.LENGTH_UNCERTAINTY.maya, barS + '.scaleZ') # Create an 'inverter' transform under which all the other parts are # hung as children, which counteracts scaling applied to its parent # triangular node. inverter = cmds.createNode('transform', name='inverter') # drive the inverter's .scaleX and .scaleZ as the inverse of the parent # node's scale values sx = cmds.createNode('multiplyDivide', name='sx') cmds.setAttr(sx + '.operation', 2) cmds.setAttr(sx + '.input1X', 1.0) cmds.connectAttr(node + '.scaleX', sx + '.input2X') cmds.connectAttr(sx + '.outputX', inverter + '.scaleX') sz = cmds.createNode('multiplyDivide', name='sz') cmds.setAttr(sz + '.operation', 2) cmds.setAttr(sz + '.input1X', 1.0) cmds.connectAttr(node + '.scaleZ', sz + '.input2X') cmds.connectAttr(sz + '.outputX', inverter + '.scaleZ') # Assemble the parts as children under the scale inverter node cmds.parent(lengthRuler, inverter) cmds.parent(widthRuler, inverter) cmds.parent(barN, inverter) cmds.parent(barS, inverter) cmds.parent(barW, inverter) cmds.parent(barE, inverter) cmds.parent(thetaPlus, inverter) cmds.parent(thetaMinus, inverter) cmds.parent(inverter, node) # Rotate thetaPlus and thetaMinus about the Y axis to indicate # rotational uncertainty cmds.connectAttr( node + '.' + TrackPropEnum.ROTATION_UNCERTAINTY.maya, node + '|' + inverter + '|' + thetaPlus + '.rotateY') neg = cmds.createNode('multiplyDivide', name='negative') cmds.setAttr(neg + '.operation', 1) cmds.setAttr(neg + '.input1X', -1.0) cmds.connectAttr( node + '.' + TrackPropEnum.ROTATION_UNCERTAINTY.maya, neg + '.input2X') cmds.connectAttr( neg + '.outputX', node + '|' + inverter + '|' + thetaMinus + '.rotateY') # Disable some transforms of the node cmds.setAttr(node + '.rotateX', lock=True) cmds.setAttr(node + '.rotateZ', lock=True) cmds.setAttr(node + '.scaleY', lock=True) cmds.setAttr(node + '.translateY', lock=True) # Now, the width of the triangle will be driven by its width attribute # (driving .scaleX) cmds.connectAttr(node + '.width', node + '.scaleX') # The quantity zN is used to scale length of the triangle cmds.connectAttr(zN + '.outputX', node + '.scaleZ') # Scale the 'length' (in x) of the width ruler cmds.connectAttr( node + '.width', node + '|' + inverter + '|WidthRuler.scaleX') # Scale the length of the length ruler cmds.connectAttr( node + '.length', node + '|' + inverter + '|LengthRuler.scaleZ') # Translate the track node epsilon below ground level (to reveal the # overlaid track siteMap) cmds.move(0, -epsilon, 0, node) # Initialize all the properties from the dictionary if props: cls.setTrackProps(node, props) else: print('in createTrackNode: properties not provided') return node # Add the new nodeName to the Cadence track scene set, color it, and # we're done cmds.sets(node, add=trackSetNode) cls.colorTrackNode(node, props) return node
def _handleRestoreButton(self): ball = cmds.ls('ball')[0] if(ball != None): cmds.delete(ball) cmds.polySphere(r=0.658, n='ball', ax = [0,0,0]) cmds.move(29.108,2,-0.2, 'ball')
def functionCube(**kwargs): height = kwargs['height'] if 'height' in kwargs else 2 x = kwargs['x'] if 'x' in kwargs else 0 res = cmds.polyCube(name='functionCube', height=height) cmds.move(x, 50, 0, res[0]) return res
import nimble from nimble import cmds kwargs = nimble.getRemoteKwargs(globals()) result = cmds.polySphere() name = result[0] offset = kwargs.get('offset', 10) cmds.move(offset, offset, offset, name) cmds.rotate(50, 20, 10, name) cmds.scale(2, 2, 2, name) response = nimble.createRemoteResponse(globals()) response.put('name', name) response.put('offset', offset)
def buildScene(self): """Doc...""" groupItems = [] hinds = [] fores = [] for c in self._data.getChannelsByKind(ChannelsEnum.POSITION): isHind = c.target in [TargetsEnum.LEFT_HIND, TargetsEnum.RIGHT_HIND] radius = 20 if isHind else 15 res = cmds.polySphere(radius=radius, name=c.target) groupItems.append(res[0]) if isHind: hinds.append(res[0]) else: fores.append(res[0]) if c.target == TargetsEnum.LEFT_HIND: self._leftHind = res[0] elif c.target == TargetsEnum.RIGHT_HIND: self._rightHind = res[0] elif c.target == TargetsEnum.RIGHT_FORE: self._rightFore = res[0] elif c.target == TargetsEnum.LEFT_FORE: self._leftFore = res[0] for k in c.keys: frames = [ ['translateX', k.value.x, k.inTangentMaya[0], k.outTangentMaya[0]], ['translateY', k.value.y, k.inTangentMaya[1], k.outTangentMaya[1]], ['translateZ', k.value.z, k.inTangentMaya[2], k.outTangentMaya[2]] ] for f in frames: cmds.setKeyframe( res[0], attribute=f[0], time=k.time, value=f[1], inTangentType=f[2], outTangentType=f[3] ) if k.event == 'land': printResult = cmds.polyCylinder( name=c.target + '_print1', radius=radius, height=(1.0 if isHind else 5.0) ) cmds.move(k.value.x, k.value.y, k.value.z, printResult[0]) groupItems.append(printResult[0]) cfg = self._data.configs name = 'cyc' + str(int(cfg.get(GaitConfigEnum.CYCLES))) + \ '_ph' + str(int(cfg.get(GaitConfigEnum.PHASE))) + \ '_gad' + str(int(cfg.get(SkeletonConfigEnum.FORE_OFFSET).z)) + \ '_step' + str(int(cfg.get(SkeletonConfigEnum.STRIDE_LENGTH))) cube = cmds.polyCube(name='pelvic_reference', width=20, height=20, depth=20) self._hips = cube[0] groupItems.append(cube[0]) cmds.move(0, 100, 0, cube[0]) backLength = self._data.configs.get(SkeletonConfigEnum.FORE_OFFSET).z - \ self._data.configs.get(SkeletonConfigEnum.HIND_OFFSET).z cube2 = cmds.polyCube(name='pectoral_comparator', width=15, height=15, depth=15) cmds.move(0, 115, backLength, cube2[0]) cmds.parent(cube2[0], cube[0], absolute=True) cmds.expression( string="%s.translateZ = 0.5*abs(%s.translateZ - %s.translateZ) + min(%s.translateZ, %s.translateZ)" % (cube[0], hinds[0], hinds[1], hinds[0], hinds[1]) ) cube = cmds.polyCube(name='pectoral_reference', width=15, height=15, depth=15) self._pecs = cube[0] groupItems.append(cube[0]) cmds.move(0, 100, 0, cube[0]) cmds.expression( string="%s.translateZ = 0.5*abs(%s.translateZ - %s.translateZ) + min(%s.translateZ, %s.translateZ)" % (cube[0], fores[0], fores[1], fores[0], fores[1]) ) self._group = cmds.group(*groupItems, world=True, name=name) cfg = self._data.configs info = 'Gait Phase: ' + \ str(cfg.get(GaitConfigEnum.PHASE)) + \ '\nGleno-Acetabular Distance (GAD): ' + \ str(cfg.get(SkeletonConfigEnum.FORE_OFFSET).z) + \ '\nStep Length: ' + \ str(cfg.get(SkeletonConfigEnum.STRIDE_LENGTH)) + \ '\nHind Duty Factor: ' + \ str(cfg.get(GaitConfigEnum.DUTY_FACTOR_HIND)) + \ '\nFore Duty Factor: ' + \ str(cfg.get(GaitConfigEnum.DUTY_FACTOR_FORE)) + \ '\nCycles: ' + \ str(cfg.get(GaitConfigEnum.CYCLES)) cmds.select(self._group) if not cmds.attributeQuery('notes', node=self._group, exists=True): cmds.addAttr(longName='notes', dataType='string') cmds.setAttr(self._group + '.notes', info, type='string') self.createShaders() self.createRenderEnvironment() minTime = min(0, int(cmds.playbackOptions(query=True, minTime=True))) deltaTime = cfg.get(GeneralConfigEnum.STOP_TIME) - cfg.get(GeneralConfigEnum.START_TIME) maxTime = max( int(float(cfg.get(GaitConfigEnum.CYCLES))*float(deltaTime)), int(cmds.playbackOptions(query=True, maxTime=True)) ) cmds.playbackOptions( minTime=minTime, animationStartTime=minTime, maxTime= maxTime, animationEndTime=maxTime ) cmds.currentTime(0, update=True) cmds.select(self._group)
def _handleExampleButton(self): """ This callback creates a polygonal cylinder in the Maya scene. """ random.seed(1234) #check sphereList = cmds.ls('hydrogen1','hydrogen2', 'oxygen','H2O') if len(sphereList)>0: cmds.delete(sphereList) #create 2 hydrogen and oxygen h1 = cmds.polySphere(r=12.0, name='hydrogen1') h2 = cmds.polySphere(r=12.0, name='hydrogen2') oxygen = cmds.polySphere(r=15.0, name='oxygen') #move cmds.move(-15,0,0,h1) cmds.move(15,0,0,h2) cmds.xform(h1, piv=[0,0,0],ws=True) cmds.xform(h2, piv=[0,0,0],ws=True) cmds.rotate(0,'75',0,h1) #group hydrogen and oxygen together H2O = cmds.group(empty=True, name='H2O#') cmds.parent('hydrogen1','hydrogen2','oxygen','H2O1') #add color def createMaterial( name, color, type ): cmds.sets( renderable=True, noSurfaceShader=True, empty=True, name=name + 'SG' ) cmds.shadingNode( type, asShader=True, name=name ) cmds.setAttr( name+'.color', color[0], color[1], color[2], type='double3') cmds.connectAttr(name+'.outColor', name+'SG.surfaceShader') def assignMaterial (name, object): cmds.sets(object, edit=True, forceElement=name+'SG') def assignNewMaterial( name, color, type, object): createMaterial (name, color, type) assignMaterial (name, object) #H is white and O is red assignNewMaterial('Red', (1,0,0), 'lambert', 'oxygen'); assignNewMaterial('White',(1,1,1),'lambert', 'hydrogen1'); assignMaterial('White', 'hydrogen2'); #key frame def keyFullRotation( pObjectName, pStartTime, pEndTime, pTargetAttribute,pValueStart, pvalueEnd ): keyt = (pStartTime[0], pStartTime[0]) cmds.cutKey( pObjectName, time=(keyt, keyt), attribute=pTargetAttribute ) cmds.setKeyframe( pObjectName, time=pStartTime, attribute=pTargetAttribute, value=pValueStart ) cmds.setKeyframe( pObjectName, time=pEndTime, attribute=pTargetAttribute, value=pvalueEnd ) #cmds.selectKey( pObjectName, time=(pStartTime, [pEndTime]), attribute=pTargetAttribute, keyframe=True ) #duplicate H2O for i in range(1,52): cmds.duplicate(H2O) #get random coord x = random.uniform(-200,200) y = random.uniform(0,300) z = random.uniform(-200,200) cmds.move(x,y,z, H2O) xRot = random.uniform(0,360) yRot = random.uniform(0,360) zRot = random.uniform(0,360) cmds.rotate(xRot,yRot,zRot,H2O) startTime = cmds.playbackOptions(minTime=1 ) endTime = cmds.playbackOptions( maxTime=30 ) h2o = "H2O"+str(i) for y in range(3): coordsX = cmds.getAttr( h2o+'.translateX' ) coordsY = cmds.getAttr( h2o+'.translateY' ) coordsZ = cmds.getAttr( h2o+'.translateZ' ) ranStartX = int(random.uniform(0,15)) ranStartY = int(random.uniform(0,15)) ranStartZ = int(random.uniform(0,15)) ranEndX = int(random.uniform(15,30)) ranEndY = int(random.uniform(15,30)) ranEndZ = int(random.uniform(15,30)) x = random.uniform(coordsX-50,coordsX+50) y = random.uniform(coordsY,coordsY+50) z = random.uniform(coordsZ-50,coordsZ+50) #print x,y,z keyFullRotation( h2o, ranStartZ, 15, 'translateZ',coordsZ,z) keyFullRotation( h2o, ranStartX, 15, 'translateX', coordsX,x) keyFullRotation( h2o, ranStartY, 15, 'translateY', coordsY,y) keyFullRotation( h2o, 15, ranEndZ, 'translateZ',z,coordsZ) keyFullRotation( h2o, 15, ranEndX, 'translateX', x,coordsX) keyFullRotation( h2o, 15, ranEndY, 'translateY', y,coordsY) RcoordsX = cmds.getAttr( h2o+'.rotateX' ) RcoordsY = cmds.getAttr( h2o+'.rotateY' ) RcoordsZ = cmds.getAttr( h2o+'.rotateZ' ) xRot = random.uniform(0,360) yRot = random.uniform(0,360) zRot = random.uniform(0,360) keyFullRotation( h2o, ranStartZ, 15, 'rotateZ',RcoordsZ,zRot) keyFullRotation( h2o, ranStartX, 15, 'rotateX', RcoordsX,xRot) keyFullRotation( h2o, ranStartY, 15, 'rotateY', RcoordsY,zRot) keyFullRotation( h2o, 15, ranEndZ, 'rotateZ',zRot,RcoordsZ) keyFullRotation( h2o, 15, ranEndX, 'rotateX', xRot,RcoordsX) keyFullRotation( h2o, 15, ranEndY, 'rotateY', zRot,RcoordsY) print 'done' cmds.delete('H2O52')