def write(self, file, flatten=True): """Export this model to an XML file. :params file: A filename or fileobject :params flatten: Boolean specifying whether the component should be flattened before saving """ from nineml.abstraction_layer.writers import XMLWriter return XMLWriter.write(component=self, file=file, flatten=flatten)
def run(plot_and_show=True): import sys from os.path import abspath, realpath, join import numpy import nineml root = abspath(join(realpath(nineml.__path__[0]), "../../..")) sys.path.append(join(root, "lib9ml/python/examples/AL")) sys.path.append(join(root, "code_generation/nmodl")) sys.path.append(join(root, "code_generation/nest2")) #from nineml.abstraction_layer.example_models import get_hierachical_iaf_3coba from nineml.abstraction_layer.testing_utils import TestableComponent from nineml.abstraction_layer.flattening import ComponentFlattener import pyNN.neuron as sim import pyNN.neuron.nineml as pyNNml from pyNN.utility import init_logging init_logging(None, debug=True) sim.setup(timestep=0.1, min_delay=0.1) #test_component = get_hierachical_iaf_3coba() test_component = TestableComponent('hierachical_iaf_3coba')() from nineml.abstraction_layer.writers import DotWriter DotWriter.write(test_component, 'test1.dot') from nineml.abstraction_layer.writers import XMLWriter XMLWriter.write(test_component, 'iaf_3coba.xml') celltype_cls = pyNNml.nineml_celltype_from_model( name="iaf_3coba", nineml_model=test_component, synapse_components=[ pyNNml.CoBaSyn(namespace='AMPA', weight_connector='q'), pyNNml.CoBaSyn(namespace='GABAa', weight_connector='q'), pyNNml.CoBaSyn(namespace='GABAb', weight_connector='q'), ]) parameters = { 'iaf.cm': 1.0, 'iaf.gl': 50.0, 'iaf.taurefrac': 5.0, 'iaf.vrest': -65.0, 'iaf.vreset': -65.0, 'iaf.vthresh': -50.0, 'AMPA.tau': 2.0, 'GABAa.tau': 5.0, 'GABAb.tau': 50.0, 'AMPA.vrev': 0.0, 'GABAa.vrev': -70.0, 'GABAb.vrev': -95.0, } parameters = ComponentFlattener.flatten_namespace_dict(parameters) cells = sim.Population(1, celltype_cls, parameters) cells.initialize('iaf_V', parameters['iaf_vrest']) cells.initialize('tspike', -1e99) # neuron not refractory at start cells.initialize('regime', 1002) # temporary hack input = sim.Population(3, sim.SpikeSourceArray) numpy.random.seed(12345) input[0].spike_times = numpy.add.accumulate( numpy.random.exponential(1000.0 / 100.0, size=1000)) input[1].spike_times = numpy.add.accumulate( numpy.random.exponential(1000.0 / 20.0, size=1000)) input[2].spike_times = numpy.add.accumulate( numpy.random.exponential(1000.0 / 50.0, size=1000)) connector = sim.OneToOneConnector(weights=1.0, delays=0.5) conn = [ sim.Projection(input[0:1], cells, connector, target='AMPA'), sim.Projection(input[1:2], cells, connector, target='GABAa'), sim.Projection(input[2:3], cells, connector, target='GABAb') ] cells._record('iaf_V') cells._record('AMPA_g') cells._record('GABAa_g') cells._record('GABAb_g') cells.record() sim.run(100.0) cells.recorders['iaf_V'].write("Results/nineml_neuron.V", filter=[cells[0]]) cells.recorders['AMPA_g'].write("Results/nineml_neuron.g_exc", filter=[cells[0]]) cells.recorders['GABAa_g'].write("Results/nineml_neuron.g_gabaA", filter=[cells[0]]) cells.recorders['GABAb_g'].write("Results/nineml_neuron.g_gagaB", filter=[cells[0]]) t = cells.recorders['iaf_V'].get()[:, 1] v = cells.recorders['iaf_V'].get()[:, 2] gInhA = cells.recorders['GABAa_g'].get()[:, 2] gInhB = cells.recorders['GABAb_g'].get()[:, 2] gExc = cells.recorders['AMPA_g'].get()[:, 2] if plot_and_show: import pylab pylab.subplot(211) pylab.plot(t, v) pylab.ylabel('voltage [mV]') pylab.suptitle("AMPA, GABA_A, GABA_B") pylab.subplot(212) pylab.plot(t, gInhA, label='GABA_A') pylab.plot(t, gInhB, label='GABA_B') pylab.plot(t, gExc, label='AMPA') pylab.ylabel('conductance [nS]') pylab.xlabel('t [ms]') pylab.legend() pylab.show() sim.end()
def run(plot_and_show=True): import sys from os.path import abspath, realpath, join import numpy import nineml root = abspath(join(realpath(nineml.__path__[0]), "../../..")) sys.path.append(join(root, "lib9ml/python/examples/AL")) sys.path.append(join(root, "code_generation/nmodl")) sys.path.append(join(root, "code_generation/nest2")) #from nineml.abstraction_layer.example_models import get_hierachical_iaf_3coba from nineml.abstraction_layer.testing_utils import TestableComponent from nineml.abstraction_layer.flattening import ComponentFlattener import pyNN.neuron as sim import pyNN.neuron.nineml as pyNNml from pyNN.utility import init_logging init_logging(None, debug=True) sim.setup(timestep=0.1, min_delay=0.1) #test_component = get_hierachical_iaf_3coba() test_component = TestableComponent('hierachical_iaf_3coba')() from nineml.abstraction_layer.writers import DotWriter DotWriter.write(test_component, 'test1.dot') from nineml.abstraction_layer.writers import XMLWriter XMLWriter.write(test_component, 'iaf_3coba.xml') celltype_cls = pyNNml.nineml_celltype_from_model( name = "iaf_3coba", nineml_model = test_component, synapse_components = [ pyNNml.CoBaSyn( namespace='AMPA', weight_connector='q' ), pyNNml.CoBaSyn( namespace='GABAa', weight_connector='q' ), pyNNml.CoBaSyn( namespace='GABAb', weight_connector='q' ), ] ) parameters = { 'iaf.cm': 1.0, 'iaf.gl': 50.0, 'iaf.taurefrac': 5.0, 'iaf.vrest': -65.0, 'iaf.vreset': -65.0, 'iaf.vthresh': -50.0, 'AMPA.tau': 2.0, 'GABAa.tau': 5.0, 'GABAb.tau': 50.0, 'AMPA.vrev': 0.0, 'GABAa.vrev': -70.0, 'GABAb.vrev': -95.0, } parameters = ComponentFlattener.flatten_namespace_dict( parameters ) cells = sim.Population(1, celltype_cls, parameters) cells.initialize('iaf_V', parameters['iaf_vrest']) cells.initialize('tspike', -1e99) # neuron not refractory at start cells.initialize('regime', 1002) # temporary hack input = sim.Population(3, sim.SpikeSourceArray) numpy.random.seed(12345) input[0].spike_times = numpy.add.accumulate(numpy.random.exponential(1000.0/100.0, size=1000)) input[1].spike_times = numpy.add.accumulate(numpy.random.exponential(1000.0/20.0, size=1000)) input[2].spike_times = numpy.add.accumulate(numpy.random.exponential(1000.0/50.0, size=1000)) connector = sim.OneToOneConnector(weights=1.0, delays=0.5) conn = [sim.Projection(input[0:1], cells, connector, target='AMPA'), sim.Projection(input[1:2], cells, connector, target='GABAa'), sim.Projection(input[2:3], cells, connector, target='GABAb')] cells._record('iaf_V') cells._record('AMPA_g') cells._record('GABAa_g') cells._record('GABAb_g') cells.record() sim.run(100.0) cells.recorders['iaf_V'].write("Results/nineml_neuron.V", filter=[cells[0]]) cells.recorders['AMPA_g'].write("Results/nineml_neuron.g_exc", filter=[cells[0]]) cells.recorders['GABAa_g'].write("Results/nineml_neuron.g_gabaA", filter=[cells[0]]) cells.recorders['GABAb_g'].write("Results/nineml_neuron.g_gagaB", filter=[cells[0]]) t = cells.recorders['iaf_V'].get()[:,1] v = cells.recorders['iaf_V'].get()[:,2] gInhA = cells.recorders['GABAa_g'].get()[:,2] gInhB = cells.recorders['GABAb_g'].get()[:,2] gExc = cells.recorders['AMPA_g'].get()[:,2] if plot_and_show: import pylab pylab.subplot(211) pylab.plot(t,v) pylab.ylabel('voltage [mV]') pylab.suptitle("AMPA, GABA_A, GABA_B") pylab.subplot(212) pylab.plot(t,gInhA,label='GABA_A') pylab.plot(t,gInhB, label='GABA_B') pylab.plot(t,gExc, label='AMPA') pylab.ylabel('conductance [nS]') pylab.xlabel('t [ms]') pylab.legend() pylab.show() sim.end()