def test_state_variables(self):
        # No parameters; nothing to infer
        c = ComponentClass(name='cl')
        self.assertEqual(len(list(c.state_variables)), 0)

        # Mismatch between inferred and actual statevariables
        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='cl',
                          state_variables=['a'])

        # From State Assignments and Differential Equations, and Conditionals
        c = ComponentClass(
            name='cl',
            aliases=['A:=a+e', 'B:=a+pi+b'],
            regimes=Regime('dX/dt = 6 + c + sin(d)',
                           'dV/dt = 1.0',
                           transitions=On('V>Vt', do=['X = X + f', 'V=0'])))
        self.assertEqual(set(c.state_variables_map.keys()), set(['X', 'V']))

        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='cl',
                          aliases=['A:=a+e', 'B:=a+pi+b'],
                          regimes=Regime('dX/dt = 6 + c + sin(d)',
                                         'dV/dt = 1.0',
                                         transitions=On(
                                             'V>Vt', do=['X = X + f', 'V=0'])),
                          state_variables=['X'])

        # Shouldn't pick up 'e' as a parameter:
        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='cl',
                          aliases=['A:=a+e', 'B:=a+pi+b'],
                          regimes=Regime('dX/dt = 6 + c + sin(d)',
                                         'dV/dt = 1.0',
                                         transitions=On(
                                             'V>Vt', do=['X = X + f', 'V=0'])),
                          state_variables=['X', 'V', 'Vt'])

        c = ComponentClass(
            name='cl',
            dynamicsblock=DynamicsBlock(regimes=[
                Regime('dX1/dt=0',
                       name='r1',
                       transitions=On('X>X1', do=['X=X0'], to='r2')),
                Regime('dX1/dt=0',
                       name='r2',
                       transitions=On('X>X1', do=['X=X0'], to='r3')),
                Regime('dX2/dt=0',
                       name='r3',
                       transitions=On('X>X1', do=['X=X0'], to='r4')),
                Regime('dX2/dt=0',
                       name='r4',
                       transitions=On('X>X1', do=['X=X0'], to='r1')),
            ]))
        self.assertEqual(set(c.state_variables_map.keys()),
                         set(['X1', 'X2', 'X']))
    def test_event_ports(self):
        # Signature: name
        # No Docstring

        # Check inference of output event ports:
        c = ComponentClass(
            name='Comp1',
            regimes=Regime(transitions=[
                On('V > a', do=OutputEvent('ev_port1')),
                On('V > b', do=OutputEvent('ev_port1')),
                On('V < c', do=OutputEvent('ev_port2')),
            ]),
        )
        self.assertEquals(len(list(c.event_ports)), 2)

        # Check inference of output event ports:
        c = ComponentClass(name='Comp1',
                           regimes=[
                               Regime(name='r1',
                                      transitions=[
                                          On('V > a',
                                             do=OutputEvent('ev_port1'),
                                             to='r2'),
                                          On('V < b',
                                             do=OutputEvent('ev_port2')),
                                      ]),
                               Regime(name='r2',
                                      transitions=[
                                          On('V > a',
                                             do=OutputEvent('ev_port2'),
                                             to='r1'),
                                          On('V < b',
                                             do=OutputEvent('ev_port3')),
                                      ])
                           ])
        self.assertEquals(len(list(c.event_ports)), 3)

        # Check inference of output event ports:
        c = ComponentClass(name='Comp1',
                           regimes=[
                               Regime(name='r1',
                                      transitions=[
                                          On('spikeinput1', do=[]),
                                          On('spikeinput2',
                                             do=OutputEvent('ev_port2'),
                                             to='r2'),
                                      ]),
                               Regime(name='r2',
                                      transitions=[
                                          On('V > a',
                                             do=OutputEvent('ev_port2')),
                                          On('spikeinput3',
                                             do=OutputEvent('ev_port3'),
                                             to='r1'),
                                      ])
                           ])
        self.assertEquals(len(list(c.event_ports)), 5)
Exemple #3
0
    def functest(self):

        cc = ComponentClass(
            name='PulsingCurrentClamp',
            parameters=['i', 'cycle_length'],
            analog_ports=[SendPort('I')],
            regimes=[
                Regime(
                    name='off',
                    transitions=On('t > tchange + cycle_length',
                                   do=['tchange = t', 'I = 0'],
                                   to='on'),
                ),
                Regime(
                    name='on',
                    transitions=On('t > tchange + cycle_length',
                                   do=['tchange = t', 'I = i'],
                                   to='off'),
                ),
            ])

        nrn = ComponentClass(
            name='LeakyNeuron',
            parameters=['Cm', 'gL', 'E'],
            regimes=[
                Regime('dV/dt = (iInj + (E-V)*gL )/Cm'),
            ],
            analog_ports=[SendPort('V'),
                          ReducePort('iInj', reduce_op='+')],
        )

        combined_comp = ComponentClass(name='Comp1',
                                       subnodes={
                                           'nrn': nrn,
                                           'cc1': cc
                                       },
                                       portconnections=[('cc1.I', 'nrn.iInj')])

        records = [
            RecordValue(what='cc1_I', tag='Current', label='Current Clamp 1'),
            RecordValue(what='nrn_V', tag='Voltage', label='Neuron Voltage'),
            RecordValue(what='cc1_tchange', tag='Tchange', label='tChange'),
            RecordValue(what='regime', tag='Regime', label='Regime'),
        ]
        parameters = {
            'cc1_i': 13.8,
            'cc1_cycle_length': 20,
            'nrn_gL': 2,
            'nrn_E': -70
        }

        results = std_pynn_simulation(test_component=combined_comp,
                                      parameters=parameters,
                                      initial_values={},
                                      synapse_components=[],
                                      records=records,
                                      plot=True)
    def test_get_fully_qualified_port_connections(self):
        # Signature: name(self)
        # Used by the flattening code.
        #
        # This method returns a d list of tuples of the
        # the fully-qualified port connections
        # from nineml.abstraction_layer.component.componentqueryer import ComponentQueryer

        # Signature: name(self)
        # Get the namespace address of this component
        from nineml.abstraction_layer import ComponentClass, SendPort, RecvPort
        from nineml.abstraction_layer import NamespaceAddress

        d = ComponentClass(name="D", aliases=["A:=1", "B:=2"], analog_ports=[SendPort("A"), SendPort("B")])
        e = ComponentClass(name="E", analog_ports=[RecvPort("C")])
        f = ComponentClass(name="F", analog_ports=[RecvPort("D")])
        g = ComponentClass(name="G", analog_ports=[RecvPort("E")])
        b = ComponentClass(name="B", subnodes={"d": d, "e": e}, portconnections=[("d.A", "e.C")])
        c = ComponentClass(
            name="C",
            aliases=["G:=-1"],
            analog_ports=[SendPort("G")],
            subnodes={"f": f, "g": g},
            portconnections=[("G", "f.D")],
        )

        a = ComponentClass(
            name="A", subnodes={"b": b, "c": c}, analog_ports=[RecvPort("F")], portconnections=[("b.d.A", "F")]
        )

        bNew = a.get_subnode("b")
        cNew = a.get_subnode("c")
        # dNew = a.get_subnode('b.d')
        # eNew = a.get_subnode('b.e')
        # fNew = a.get_subnode('c.f')
        # gNew = a.get_subnode('c.g')

        self.assertEquals(
            list(a.query.get_fully_qualified_port_connections()), [(NamespaceAddress("b.d.A"), NamespaceAddress("F"))]
        )

        self.assertEquals(
            list(bNew.query.get_fully_qualified_port_connections()),
            [(NamespaceAddress("b.d.A"), NamespaceAddress("b.e.C"))],
        )

        self.assertEquals(
            list(cNew.query.get_fully_qualified_port_connections()),
            [(NamespaceAddress("c.G"), NamespaceAddress("c.f.D"))],
        )
Exemple #5
0
    def test1(self):

        cc = ComponentClass(
            name='SimpleCurrentClamp',
            parameters=['i'],
            analog_ports=[SendPort('I')],
            aliases='I:=i',
        )

        nrn = ComponentClass(
            name='LeakyNeuron',
            parameters=['Cm', 'gL', 'E'],
            regimes=[
                Regime('dV/dt = (iInj + (E-V)*gL )/Cm'),
            ],
            analog_ports=[SendPort('V'),
                          ReducePort('iInj', reduce_op='+')],
        )

        combined_comp = ComponentClass(name='Comp1',
                                       subnodes={
                                           'nrn': nrn,
                                           'cc1': cc
                                       },
                                       portconnections=[('cc1.I', 'nrn.iInj')])

        records = [
            RecordValue(what='cc1_I', tag='Current', label='Current Clamp 1'),
            RecordValue(what='nrn_V', tag='Voltage', label='Neuron Voltage'),
        ]

        res = std_pynn_simulation(test_component=combined_comp,
                                  parameters={
                                      'cc1_i': 13.8,
                                      'nrn_gL': 2,
                                      'nrn_E': -70
                                  },
                                  initial_values={},
                                  synapse_components=[],
                                  records=records,
                                  plot=False)

        t, records = res

        self.assertAlmostEqual(records['cc1_I'][t > 10].mean(), 13.8)
        self.assertAlmostEqual(records['cc1_I'][t > 10].std(), 0.0)

        self.assertAlmostEqual(records['nrn_V'][t > 10].mean(), -63.1)
        self.assertAlmostEqual(records['nrn_V'][t > 10].std(), 0.0)
    def test_parameters(self):
        # Signature: name
        # No Docstring

        # No parameters; nothing to infer
        c = ComponentClass(name='cl')
        self.assertEqual(len(list(c.parameters)), 0)

        # Mismatch between inferred and actual parameters
        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='cl',
                          parameters=['a'])

        # Single parameter inference from an alias block
        c = ComponentClass(name='cl', aliases=['A:=a'])
        self.assertEqual(len(list(c.parameters)), 1)
        self.assertEqual(list(c.parameters)[0].name, 'a')

        # More complex inference:
        c = ComponentClass(name='cl', aliases=['A:=a+e', 'B:=a+pi+b'])
        self.assertEqual(len(list(c.parameters)), 3)
        self.assertEqual(sorted([p.name for p in c.parameters]),
                         ['a', 'b', 'e'])

        # From State Assignments and Differential Equations, and Conditionals
        c = ComponentClass(
            name='cl',
            aliases=['A:=a+e', 'B:=a+pi+b'],
            regimes=Regime('dX/dt = 6 + c + sin(d)',
                           'dV/dt = 1.0',
                           transitions=On('V>Vt', do=['X = X + f', 'V=0'])))
        self.assertEqual(len(list(c.parameters)), 7)
        self.assertEqual(sorted([p.name for p in c.parameters]),
                         ['Vt', 'a', 'b', 'c', 'd', 'e', 'f'])

        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='cl',
                          aliases=['A:=a+e', 'B:=a+pi+b'],
                          regimes=Regime('dX/dt = 6 + c + sin(d)',
                                         'dV/dt = 1.0',
                                         transitions=On(
                                             'V>Vt', do=['X = X + f', 'V=0'])),
                          parameters=['a', 'b', 'c'])
    def test_get_subns_addr(self):
        # Signature: name(self, component_name)
                # Returns the address of a subcomponent at this address.
                #
                # For example:
                #
                # >>> a = NamespaceAddress('level1.level2.level3')
                # >>> a.get_subns_addr('subcomponent')
                # NameSpaceAddress: '/level1/level2/level3/subcomponent/'
        # from nineml.abstraction_layer.component.namespaceaddress import NamespaceAddress
        from nineml.abstraction_layer import ComponentClass
        from nineml.abstraction_layer import NamespaceAddress

        d = ComponentClass(name='D',)
        e = ComponentClass(name='E')
        f = ComponentClass(name='F')
        g = ComponentClass(name='G')
        b = ComponentClass(name='B', subnodes={'atD': d, 'atE': e})
        c = ComponentClass(name='C', subnodes={'atF': f, 'atG': g})
        a = ComponentClass(name='A', subnodes={'atB': b, 'atC': c})

        # Construction of the objects causes cloning to happen:
        # Therefore we test by looking up and checking that there
        # are the correct component names:
        bNew = a.get_subnode('atB')
        cNew = a.get_subnode('atC')
        dNew = a.get_subnode('atB.atD')
        eNew = a.get_subnode('atB.atE')
        fNew = a.get_subnode('atC.atF')
        gNew = a.get_subnode('atC.atG')

        self.assertEquals(
            gNew.get_node_addr().get_subns_addr('MyObject1'),
            NamespaceAddress('atC.atG.MyObject1')
        )

        self.assertEquals(
            eNew.get_node_addr().get_subns_addr('MyObject2'),
            NamespaceAddress('atB.atE.MyObject2')
        )

        self.assertEquals(
            bNew.get_node_addr().get_subns_addr('MyObject3'),
            NamespaceAddress('atB.MyObject3')
        )
    def test_aliases_map(self):
        # Signature: name
        # Forwarding function to self.dynamics.alias_map

        self.assertEqual(ComponentClass(name='C1').aliases_map, {})

        c1 = ComponentClass(name='C1', aliases=['A:=3'])
        self.assertEqual(c1.aliases_map['A'].rhs_as_python_func()(), 3)
        self.assertEqual(len(c1.aliases_map), 1)

        c2 = ComponentClass(name='C1', aliases=['A:=3', 'B:=5'])
        self.assertEqual(c2.aliases_map['A'].rhs_as_python_func()(), 3)
        self.assertEqual(c2.aliases_map['B'].rhs_as_python_func()(), 5)
        self.assertEqual(len(c2.aliases_map), 2)

        c3 = ComponentClass(
            name='C1', dynamicsblock=DynamicsBlock(aliases=['C:=13', 'Z:=15']))
        self.assertEqual(c3.aliases_map['C'].rhs_as_python_func()(), 13)
        self.assertEqual(c3.aliases_map['Z'].rhs_as_python_func()(), 15)

        self.assertEqual(len(c3.aliases_map), 2)
    def duplicate_port_name_event_analog(self):

        # Check different names are OK:
        ComponentClass(name='C1',
                       aliases=['A:=1'],
                       event_ports=[EventReceivePort('A')],
                       analog_ports=[AnalogSendPort('A')])

        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='C1',
                          aliases=['A:=1'],
                          event_ports=[EventReceivePort('A')],
                          analog_ports=[AnalogSendPort('A')])
    def test_transitions(self):

        c = ComponentClass(
            name='cl',
            dynamicsblock=DynamicsBlock(regimes=[
                Regime('dX1/dt=0',
                       name='r1',
                       transitions=[
                           On('X>X1', do=['X=X0'], to='r2'),
                           On('X>X2', do=['X=X0'], to='r3'),
                       ]),
                Regime(
                    'dX1/dt=0',
                    name='r2',
                    transitions=On('X>X1', do=['X=X0'], to='r3'),
                ),
                Regime('dX2/dt=0',
                       name='r3',
                       transitions=[
                           On('X>X1', do=['X=X0'], to='r4'),
                           On('X>X2', do=['X=X0'], to=None)
                       ]),
                Regime('dX2/dt=0',
                       name='r4',
                       transitions=On('X>X1', do=['X=X0'], to=None)),
            ]))

        self.assertEquals(len(list(c.transitions)), 6)

        r_map = c.regimes_map
        r1 = r_map['r1']
        r2 = r_map['r2']
        r3 = r_map['r3']
        r4 = r_map['r4']

        self.assertEquals(len(list(r1.transitions)), 2)
        self.assertEquals(len(list(r2.transitions)), 1)
        self.assertEquals(len(list(r3.transitions)), 2)
        self.assertEquals(len(list(r4.transitions)), 1)

        target_regimes = lambda r: set(
            [tr.target_regime for tr in r.transitions])
        self.assertEquals(target_regimes(r1), set([r2, r3]))
        self.assertEquals(target_regimes(r2), set([r3]))
        self.assertEquals(target_regimes(r3), set([r3, r4]))
        self.assertEquals(target_regimes(r4), set([r4]))
Exemple #11
0
def get_component():
    off_regime = Regime(name="off_regime",
                        time_derivatives=[
                            "dRon/dt =  -Ron/Rtau",
                            "dRoff/dt = -Beta*Roff",
                        ],
                        transitions=On('spikeoutput',
                                       do=[
                                           "t_off = t+Cdur",
                                           "r0 = r0*exp(-Beta*(t - t0))",
                                           "t0 = t", "Ron = Ron +r0",
                                           "Roff = Roff - r0"
                                       ],
                                       to="on_regime"))

    on_regime = Regime(
        name="on_regime",
        time_derivatives=[
            "dRon/dt = (weight*Rinf - Ron)/Rtau",
            "dRoff/dt = -Beta*Roff",
        ],
        transitions=[
            On('spikeoutput', do="t_off = t+Cdur"
               ),  # Extend duration if input spike arrives while on
            On(
                "t_off>t",  # What to do when its time to turn off
                do=[
                    "r0 = weight*Rinf + (r0 - weight*Rinf)*exp(-(t - t0)/Rtau)",
                    "t0 = t", "Ron = Ron - r0", "Roff = Roff - r0"
                ],
                to='off_regime')
        ])

    analog_ports = [
        RecvPort("weight"),
        RecvPort("V"),
        SendPort("Isyn"),
        SendPort("gsyn")
    ]

    c1 = ComponentClass(
        "AMPA",
        regimes=[off_regime, on_regime],
        analog_ports=analog_ports,
        aliases=["g := (on + off)", "Isyn := g*(E-V)", "gsyn := g"])
    return c1
    def test_backsub_all(self):

        # Check the aliases:
        # ====================== #
        c2 = ComponentClass(name='C1', aliases=['A:=1+2', 'B:=5*A', 'C:=B+2'])
        self.assertEqual(c2.aliases_map['A'].rhs_as_python_func()(), 3)

        # This should assert, because its not yet back-subbed
        c2.backsub_all()
        self.assertEqual(c2.aliases_map['B'].rhs_as_python_func()(), 15)
        # Check the ordering:
        self.assertEqual(c2.aliases_map['C'].rhs_as_python_func()(),
                         ((5 * (3)) + 2))
        # ====================== #

        # Check the equations:
        # ====================== #
        #         warnings.warn('Tests not implemented')
        pass
    def test_accept_visitor(self):
        # Signature: name(self, visitor, **kwargs)
        # |VISITATION|
        # Check the Component is forwarding arguments:

        class TestVisitor(object):
            def visit(self, obj, **kwargs):
                return obj.accept_visitor(self, **kwargs)

            def visit_componentclass(self, component, **kwargs):
                return kwargs

        c = ComponentClass(name='MyComponent')
        v = TestVisitor()

        self.assertEqual(v.visit(c, kwarg1='Hello', kwarg2='Hello2'), {
            'kwarg1': 'Hello',
            'kwarg2': 'Hello2'
        })
    def test_get_node_addr(self):
        # Signature: name(self)
        # Get the namespace address of this component

        d = ComponentClass(name='D', )
        e = ComponentClass(name='E')
        f = ComponentClass(name='F')
        g = ComponentClass(name='G')
        b = ComponentClass(name='B', subnodes={'d': d, 'e': e})
        c = ComponentClass(name='C', subnodes={'f': f, 'g': g})
        a = ComponentClass(name='A', subnodes={'b': b, 'c': c})

        # Construction of the objects causes cloning to happen:
        # Therefore we test by looking up and checking that there
        # are the correct component names:
        bNew = a.get_subnode('b')
        cNew = a.get_subnode('c')
        dNew = a.get_subnode('b.d')
        eNew = a.get_subnode('b.e')
        fNew = a.get_subnode('c.f')
        gNew = a.get_subnode('c.g')

        self.assertEquals(a.get_node_addr(), NamespaceAddress.create_root())
        self.assertEquals(bNew.get_node_addr(), NamespaceAddress('b'))
        self.assertEquals(cNew.get_node_addr(), NamespaceAddress('c'))
        self.assertEquals(dNew.get_node_addr(), NamespaceAddress('b.d'))
        self.assertEquals(eNew.get_node_addr(), NamespaceAddress('b.e'))
        self.assertEquals(fNew.get_node_addr(), NamespaceAddress('c.f'))
        self.assertEquals(gNew.get_node_addr(), NamespaceAddress('c.g'))

        self.assertEquals(a.name, 'A')
        self.assertEquals(bNew.name, 'B')
        self.assertEquals(cNew.name, 'C')
        self.assertEquals(dNew.name, 'D')
        self.assertEquals(eNew.name, 'E')
        self.assertEquals(fNew.name, 'F')
        self.assertEquals(gNew.name, 'G')
Exemple #15
0
    def test_Constructor(self):

        d = ComponentClass(
            name='D',
            aliases=['D1:=dp1', 'D2 := dIn1', 'D3 := SV1'],
            regimes=[
                Regime('dSV1/dt = -SV1/dp2', name='r1', transitions=On('input', 'SV1=SV1+1'))],
            analog_ports=[RecvPort('dIn1'), SendPort('D1'), SendPort('D2')],
            parameters=['dp1', 'dp2']
        )

        c = ComponentClass(
            name='C',
            aliases=['C1:=cp1', 'C2 := cIn1', 'C3 := SV1'],
            regimes=[
                Regime(
                    'dSV1/dt = -SV1/cp2',
                    transitions=[On('SV1>cp1', do=[OutputEvent('emit')]),
                                 On('spikein', do=[OutputEvent('emit')])],
                    name='r1',
                ),
                Regime(name='r2', transitions=On('SV1>1', to='r1'))
            ],
            analog_ports=[RecvPort('cIn1'), RecvPort('cIn2'), SendPort('C1'), SendPort('C2')],
            parameters=['cp1', 'cp2']
        )

        # Test Cloner, no hierachy
        # Everything should be as before:
        c_clone = DynamicsClonerVisitorPrefixNamespace().visit(c)

        self.assertEqual(c_clone.name, 'C')
        self.assertEqual(set(c_clone.aliases_map.keys()), set(['C1', 'C2', 'C3']))

        # - Regimes and Transitions:
        self.assertEqual(set(c_clone.regimes_map.keys()), set(['r1', 'r2']))
        self.assertEqual(len(list(c_clone.regimes_map['r1'].on_events)), 1)
        self.assertEqual(len(list(c_clone.regimes_map['r1'].on_conditions)), 1)
        self.assertEqual(len(list(c_clone.regimes_map['r2'].on_events)), 0)
        self.assertEqual(len(list(c_clone.regimes_map['r2'].on_conditions)), 1)
        self.assertEqual(len(list(c_clone.regimes_map['r2'].on_conditions)), 1)

        #  - Ports & Parameters:
        self.assertEqual(
            set(c_clone.query.analog_ports_map.keys()),  set(['cIn2', 'cIn1', 'C1', 'C2']))
        self.assertEqual(set(c_clone.query.event_ports_map.keys()),   set(['spikein', 'emit']))
        self.assertEqual(set(c_clone.query.parameters_map.keys()),    set(['cp1', 'cp2']))
        self.assertEqual(set(c_clone.state_variables_map.keys()),     set(['SV1']))

        del c_clone

        # Test Cloner, 1 level of hierachy
        # Everything should be as before:
        b = ComponentClass(name='B',
                           subnodes={'c1': c, 'c2': c},
                           portconnections=[('c1.C1', 'c2.cIn1'), ('c2.emit', 'c1.spikein'), ])

        b_clone = DynamicsClonerVisitorPrefixNamespace().visit(b)
        c1_clone = b_clone.get_subnode('c1')
        c2_clone = b_clone.get_subnode('c2')

        self.assertEqual(c1_clone.name, 'C')
        self.assertEqual(c2_clone.name, 'C')
        self.assertEqual(set(c1_clone.aliases_map.keys()), set(['c1_C1', 'c1_C2', 'c1_C3']))
        self.assertEqual(set(c2_clone.aliases_map.keys()), set(['c2_C1', 'c2_C2', 'c2_C3']))

        # - Regimes and Transitions:
        self.assertEqual(set(c1_clone.regimes_map.keys()), set(['r1', 'r2']))
        self.assertEqual(len(list(c1_clone.regimes_map['r1'].on_events)), 1)
        self.assertEqual(len(list(c1_clone.regimes_map['r1'].on_conditions)), 1)
        self.assertEqual(len(list(c1_clone.regimes_map['r2'].on_events)), 0)
        self.assertEqual(len(list(c1_clone.regimes_map['r2'].on_conditions)), 1)
        self.assertEqual(len(list(c1_clone.regimes_map['r2'].on_conditions)), 1)

        self.assertEqual(set(c2_clone.regimes_map.keys()), set(['r1', 'r2']))
        self.assertEqual(len(list(c2_clone.regimes_map['r1'].on_events)), 1)
        self.assertEqual(len(list(c2_clone.regimes_map['r1'].on_conditions)), 1)
        self.assertEqual(len(list(c2_clone.regimes_map['r2'].on_events)), 0)
        self.assertEqual(len(list(c2_clone.regimes_map['r2'].on_conditions)), 1)
        self.assertEqual(len(list(c2_clone.regimes_map['r2'].on_conditions)), 1)

        #  - Ports & Parameters:
        self.assertEqual(
            set(c1_clone.query.analog_ports_map.keys()),
            set(['c1_cIn1', 'c1_cIn2', 'c1_C1', 'c1_C2']))
        self.assertEqual(
            set(c2_clone.query.analog_ports_map.keys()),
            set(['c2_cIn1', 'c2_cIn2', 'c2_C1', 'c2_C2']))

        self.assertEqual(set(c1_clone.query.event_ports_map.keys()),
                         set(['c1_spikein', 'c1_emit']))
        self.assertEqual(set(c2_clone.query.event_ports_map.keys()),
                         set(['c2_spikein', 'c2_emit']))

        self.assertEqual(
            set(c1_clone.query.parameters_map.keys()),
            set(['c1_cp1', 'c1_cp2']))
        self.assertEqual(
            set(c2_clone.query.parameters_map.keys()),
            set(['c2_cp1', 'c2_cp2']))
        self.assertEqual(
            set(c1_clone.state_variables_map.keys()),
            set(['c1_SV1']))
        self.assertEqual(
            set(c2_clone.state_variables_map.keys()),
            set(['c2_SV1']))

        # - Port Connections:
        self.assertEqual(
            set(b_clone.portconnections),
            set([(NSA('c1.c1_C1'),   NSA('c2.c2_cIn1')),
                 (NSA('c2.c2_emit'), NSA('c1.c1_spikein'))])
        )

        del b_clone
        del c1_clone
        del c2_clone

        # Two Levels of nesting:
        a = ComponentClass(name='A',
                           subnodes={'b1': b, 'b2': b, 'c3': c},
                           portconnections=[
                           ('b1.c1.emit', 'c3.spikein'),
                           ('c3.C2', 'b1.c2.cIn2')
                           ]
                           )
        a_clone = DynamicsClonerVisitorPrefixNamespace().visit(a)

        b1_clone = a_clone.get_subnode('b1')
        b2_clone = a_clone.get_subnode('b2')
        b1c1_clone = a_clone.get_subnode('b1.c1')
        b1c2_clone = a_clone.get_subnode('b1.c2')
        b2c1_clone = a_clone.get_subnode('b2.c1')
        b2c2_clone = a_clone.get_subnode('b2.c2')
        c3_clone = a_clone.get_subnode('c3')

        clones = [b1_clone,
                  b2_clone,
                  b1c1_clone,
                  b1c2_clone,
                  b2c1_clone,
                  b2c2_clone,
                  c3_clone, ]

        # Check for duplicates:
        self.assertEquals(len(clones), len(set(clones)))

        # Names:
        self.assertEqual(b1_clone.name, 'B')
        self.assertEqual(b2_clone.name, 'B')
        self.assertEqual(b1c1_clone.name, 'C')
        self.assertEqual(b1c2_clone.name, 'C')
        self.assertEqual(c3_clone.name, 'C')
        self.assertEqual(b2c1_clone.name, 'C')
        self.assertEqual(b2c2_clone.name, 'C')

        # Aliases:
        self.assertEqual(set(b1_clone.aliases_map.keys()), set([]))
        self.assertEqual(set(b2_clone.aliases_map.keys()), set([]))
        self.assertEqual(set(b1c1_clone.aliases_map.keys()), set(
            ['b1_c1_C1', 'b1_c1_C2', 'b1_c1_C3']))
        self.assertEqual(set(b1c2_clone.aliases_map.keys()), set(
            ['b1_c2_C1', 'b1_c2_C2', 'b1_c2_C3']))
        self.assertEqual(set(b2c1_clone.aliases_map.keys()), set(
            ['b2_c1_C1', 'b2_c1_C2', 'b2_c1_C3']))
        self.assertEqual(set(b2c2_clone.aliases_map.keys()), set(
            ['b2_c2_C1', 'b2_c2_C2', 'b2_c2_C3']))
        self.assertEqual(set(c3_clone.aliases_map.keys()), set(['c3_C1', 'c3_C2', 'c3_C3']))

        # Regimes:
        self.assertEqual(set(b1_clone.regimes_map.keys()), set([]))
        self.assertEqual(set(b2_clone.regimes_map.keys()), set([]))
        self.assertEqual(set(b1c1_clone.regimes_map.keys()), set(['r1', 'r2']))
        self.assertEqual(set(b1c2_clone.regimes_map.keys()), set(['r1', 'r2']))
        self.assertEqual(set(b2c1_clone.regimes_map.keys()), set(['r1', 'r2']))
        self.assertEqual(set(b2c2_clone.regimes_map.keys()), set(['r1', 'r2']))
        self.assertEqual(set(c3_clone.regimes_map.keys()), set(['r1', 'r2']))

        self.assertEqual(len(list(b1c1_clone.regimes_map['r1'].on_events)), 1)
        self.assertEqual(len(list(b1c1_clone.regimes_map['r1'].on_conditions)), 1)
        self.assertEqual(len(list(b1c1_clone.regimes_map['r2'].on_events)), 0)
        self.assertEqual(len(list(b1c1_clone.regimes_map['r2'].on_conditions)), 1)
        self.assertEqual(len(list(b1c1_clone.regimes_map['r2'].on_conditions)), 1)

        self.assertEqual(len(list(b1c2_clone.regimes_map['r1'].on_events)), 1)
        self.assertEqual(len(list(b1c2_clone.regimes_map['r1'].on_conditions)), 1)
        self.assertEqual(len(list(b1c2_clone.regimes_map['r2'].on_events)), 0)
        self.assertEqual(len(list(b1c2_clone.regimes_map['r2'].on_conditions)), 1)
        self.assertEqual(len(list(b1c2_clone.regimes_map['r2'].on_conditions)), 1)

        self.assertEqual(len(list(b2c1_clone.regimes_map['r1'].on_events)), 1)
        self.assertEqual(len(list(b2c1_clone.regimes_map['r1'].on_conditions)), 1)
        self.assertEqual(len(list(b2c1_clone.regimes_map['r2'].on_events)), 0)
        self.assertEqual(len(list(b2c1_clone.regimes_map['r2'].on_conditions)), 1)
        self.assertEqual(len(list(b2c1_clone.regimes_map['r2'].on_conditions)), 1)

        self.assertEqual(len(list(b2c2_clone.regimes_map['r1'].on_events)), 1)
        self.assertEqual(len(list(b2c2_clone.regimes_map['r1'].on_conditions)), 1)
        self.assertEqual(len(list(b2c2_clone.regimes_map['r2'].on_events)), 0)
        self.assertEqual(len(list(b2c2_clone.regimes_map['r2'].on_conditions)), 1)
        self.assertEqual(len(list(b2c2_clone.regimes_map['r2'].on_conditions)), 1)

        self.assertEqual(len(list(c3_clone.regimes_map['r1'].on_events)), 1)
        self.assertEqual(len(list(c3_clone.regimes_map['r1'].on_conditions)), 1)
        self.assertEqual(len(list(c3_clone.regimes_map['r2'].on_events)), 0)
        self.assertEqual(len(list(c3_clone.regimes_map['r2'].on_conditions)), 1)
        self.assertEqual(len(list(c3_clone.regimes_map['r2'].on_conditions)), 1)

        # Ports, params and state-vars:
        # c1:
        self.assertEqual(set(b1c1_clone.query.analog_ports_map.keys()), set(
            ['b1_c1_cIn1', 'b1_c1_cIn2',  'b1_c1_C1', 'b1_c1_C2']))
        self.assertEqual(
            set(b1c1_clone.query.event_ports_map.keys()),  set(['b1_c1_spikein', 'b1_c1_emit']))
        self.assertEqual(
            set(b1c1_clone.query.parameters_map.keys()),   set(['b1_c1_cp1',    'b1_c1_cp2']))
        self.assertEqual(set(b1c1_clone.state_variables_map.keys()),    set(['b1_c1_SV1']))

        self.assertEqual(set(b1c2_clone.query.analog_ports_map.keys()), set(
            ['b1_c2_cIn1',  'b1_c2_cIn2',  'b1_c2_C1', 'b1_c2_C2']))
        self.assertEqual(
            set(b1c2_clone.query.event_ports_map.keys()),  set(['b1_c2_spikein', 'b1_c2_emit']))
        self.assertEqual(
            set(b1c2_clone.query.parameters_map.keys()),   set(['b1_c2_cp1',    'b1_c2_cp2']))
        self.assertEqual(set(b1c2_clone.state_variables_map.keys()),    set(['b1_c2_SV1']))

        self.assertEqual(set(b2c1_clone.query.analog_ports_map.keys()),
                         set(['b2_c1_cIn1',  'b2_c1_cIn2',  'b2_c1_C1', 'b2_c1_C2']))
        self.assertEqual(
            set(b2c1_clone.query.event_ports_map.keys()),  set(['b2_c1_spikein', 'b2_c1_emit']))
        self.assertEqual(
            set(b2c1_clone.query.parameters_map.keys()),   set(['b2_c1_cp1',    'b2_c1_cp2']))
        self.assertEqual(set(b2c1_clone.state_variables_map.keys()),    set(['b2_c1_SV1']))

        self.assertEqual(set(b2c2_clone.query.analog_ports_map.keys()), set(
            ['b2_c2_cIn1',  'b2_c2_cIn2',  'b2_c2_C1', 'b2_c2_C2']))
        self.assertEqual(
            set(b2c2_clone.query.event_ports_map.keys()),  set(['b2_c2_spikein', 'b2_c2_emit']))
        self.assertEqual(
            set(b2c2_clone.query.parameters_map.keys()),   set(['b2_c2_cp1',    'b2_c2_cp2']))
        self.assertEqual(set(b2c2_clone.state_variables_map.keys()),    set(['b2_c2_SV1']))

        self.assertEqual(set(c3_clone.query.analog_ports_map.keys()), set(
            ['c3_cIn1', 'c3_cIn2', 'c3_C1', 'c3_C2']))
        self.assertEqual(
            set(c3_clone.query.event_ports_map.keys()),  set(['c3_spikein',     'c3_emit']))
        self.assertEqual(
            set(c3_clone.query.parameters_map.keys()),   set(['c3_cp1',         'c3_cp2']))
        self.assertEqual(set(c3_clone.state_variables_map.keys()),    set(['c3_SV1']))

        self.assertEqual(set(b1_clone.query.analog_ports_map.keys()), set([]))
        self.assertEqual(set(b1_clone.query.event_ports_map.keys()),  set([]))
        self.assertEqual(set(b1_clone.query.parameters_map.keys()),   set([]))
        self.assertEqual(set(b1_clone.state_variables_map.keys()),    set([]))

        self.assertEqual(set(b2_clone.query.analog_ports_map.keys()), set([]))
        self.assertEqual(set(b2_clone.query.event_ports_map.keys()),  set([]))
        self.assertEqual(set(b2_clone.query.parameters_map.keys()),   set([]))
        self.assertEqual(set(b2_clone.state_variables_map.keys()),    set([]))

        # Port Connections
        self.assertEqual(
            set(b1_clone.portconnections),
            set([
                (NSA('c1.b1_c1_C1'), NSA('c2.b1_c2_cIn1')),
                        (NSA('c2.b1_c2_emit'), NSA('c1.b1_c1_spikein')),
                ])
        )
        self.assertEqual(
            set(b2_clone.portconnections),
            set([
                (NSA('c1.b2_c1_C1'),  NSA('c2.b2_c2_cIn1')),
                        (NSA('c2.b2_c2_emit'), NSA('c1.b2_c1_spikein')),
                ])
        )

        self.assertEqual(
            set(a_clone.portconnections),
            set([
                (NSA('b1.c1.b1_c1_emit'), NSA('c3.c3_spikein')),
                        (NSA('c3.c3_C2'), NSA('b1.c2.b1_c2_cIn2')),
                ])
        )
    def test_regimes(self):

        c = ComponentClass(name='cl', )
        self.assertEqual(len(list(c.regimes)), 0)

        c = ComponentClass(name='cl',
                           regimes=Regime('dX/dt=0',
                                          name='r1',
                                          transitions=On('X>X1',
                                                         do=['X = X0'],
                                                         to=None)))
        self.assertEqual(len(list(c.regimes)), 1)

        c = ComponentClass(name='cl',
                           regimes=[
                               Regime('dX/dt=0',
                                      name='r1',
                                      transitions=On('X>X1',
                                                     do=['X=X0'],
                                                     to='r2')),
                               Regime('dX/dt=0',
                                      name='r2',
                                      transitions=On('X>X1',
                                                     do=['X=X0'],
                                                     to='r3')),
                               Regime('dX/dt=0',
                                      name='r3',
                                      transitions=On('X>X1',
                                                     do=['X=X0'],
                                                     to='r4')),
                               Regime('dX/dt=0',
                                      name='r4',
                                      transitions=On('X>X1',
                                                     do=['X=X0'],
                                                     to='r1')),
                           ])
        self.assertEqual(len(list(c.regimes)), 4)
        self.assertEqual(set(c.regimes_map.keys()),
                         set(['r1', 'r2', 'r3', 'r4']))

        c = ComponentClass(
            name='cl',
            dynamicsblock=DynamicsBlock(regimes=[
                Regime('dX/dt=0',
                       name='r1',
                       transitions=On('X>X1', do=['X=X0'], to='r2')),
                Regime('dX/dt=0',
                       name='r2',
                       transitions=On('X>X1', do=['X=X0'], to='r3')),
                Regime('dX/dt=0',
                       name='r3',
                       transitions=On('X>X1', do=['X=X0'], to='r4')),
                Regime('dX/dt=0',
                       name='r4',
                       transitions=On('X>X1', do=['X=X0'], to='r1')),
            ]))
        self.assertEqual(len(list(c.regimes)), 4)
        self.assertEqual(set([r.name for r in c.regimes]),
                         set(['r1', 'r2', 'r3', 'r4']))

        # Duplicate Names:
        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='cl',
                          regimes=[
                              Regime('dX/dt=0',
                                     name='r',
                                     transitions=On('X>X1', do=['X=X0'])),
                              Regime('dX/dt=0',
                                     name='r',
                                     transitions=On(
                                         'X>X1',
                                         do=['X=X0'],
                                     )),
                          ])
    def test_recurse_all_components(self):
        # Signature: name
        # Returns an iterator over this component and all subcomponents

        from nineml.abstraction_layer import ComponentClass

        d = ComponentClass(name="D")
        e = ComponentClass(name="E")
        f = ComponentClass(name="F")
        g = ComponentClass(name="G")

        b = ComponentClass(name="B")
        b.insert_subnode(namespace="d", subnode=d)
        b.insert_subnode(namespace="e", subnode=e)

        c = ComponentClass(name="C")
        c.insert_subnode(namespace="f", subnode=f)
        c.insert_subnode(namespace="g", subnode=g)

        a = ComponentClass(name="A")
        a.insert_subnode(namespace="b", subnode=b)
        a.insert_subnode(namespace="c", subnode=c)

        # Construction of the objects causes cloning to happen:
        # Therefore we test by looking up and checking that there
        # are the correct component names:
        bNew = a.get_subnode("b")
        cNew = a.get_subnode("c")
        dNew = a.get_subnode("b.d")
        eNew = a.get_subnode("b.e")
        fNew = a.get_subnode("c.f")
        gNew = a.get_subnode("c.g")

        self.assertEquals(set(a.query.recurse_all_components), set([a, bNew, cNew, dNew, eNew, fNew, gNew]))
        self.assertEquals(set(bNew.query.recurse_all_components), set([bNew, dNew, eNew]))
        self.assertEquals(set(cNew.query.recurse_all_components), set([cNew, fNew, gNew]))
        self.assertEquals(set(dNew.query.recurse_all_components), set([dNew]))
        self.assertEquals(set(eNew.query.recurse_all_components), set([eNew]))
        self.assertEquals(set(fNew.query.recurse_all_components), set([fNew]))
        self.assertEquals(set(gNew.query.recurse_all_components), set([gNew]))
    def test_insert_subnode(self):
        # Signature: name(self, subnode, namespace)
        # Insert a subnode into this component
        #
        #
        # :param subnode: An object of type ``ComponentClass``.
        # :param namespace: A `string` specifying the name of the component in
        #     this components namespace.
        #
        # :raises: ``NineMLRuntimeException`` if there is already a subcomponent at
        #     the same namespace location
        #
        # .. note::
        #
        #     This method will clone the subnode.

        d = ComponentClass(name='D')
        e = ComponentClass(name='E')
        f = ComponentClass(name='F')
        g = ComponentClass(name='G')

        b = ComponentClass(name='B')
        b.insert_subnode(namespace='d', subnode=d)
        b.insert_subnode(namespace='e', subnode=e)

        c = ComponentClass(name='C')
        c.insert_subnode(namespace='f', subnode=f)
        c.insert_subnode(namespace='g', subnode=g)

        a = ComponentClass(name='A')
        a.insert_subnode(namespace='b', subnode=b)
        a.insert_subnode(namespace='c', subnode=c)

        # Construction of the objects causes cloning to happen:
        # Therefore we test by looking up and checking that there
        # are the correct component names:
        bNew = a.get_subnode('b')
        cNew = a.get_subnode('c')
        dNew = a.get_subnode('b.d')
        eNew = a.get_subnode('b.e')
        fNew = a.get_subnode('c.f')
        gNew = a.get_subnode('c.g')

        self.assertEquals(a.get_node_addr(), NamespaceAddress.create_root())
        self.assertEquals(bNew.get_node_addr(), NamespaceAddress('b'))
        self.assertEquals(cNew.get_node_addr(), NamespaceAddress('c'))
        self.assertEquals(dNew.get_node_addr(), NamespaceAddress('b.d'))
        self.assertEquals(eNew.get_node_addr(), NamespaceAddress('b.e'))
        self.assertEquals(fNew.get_node_addr(), NamespaceAddress('c.f'))
        self.assertEquals(gNew.get_node_addr(), NamespaceAddress('c.g'))

        self.assertEquals(a.name, 'A')
        self.assertEquals(bNew.name, 'B')
        self.assertEquals(cNew.name, 'C')
        self.assertEquals(dNew.name, 'D')
        self.assertEquals(eNew.name, 'E')
        self.assertEquals(fNew.name, 'F')
        self.assertEquals(gNew.name, 'G')

        self.assertRaises(NineMLRuntimeError, a.get_subnode, 'x')
        self.assertRaises(NineMLRuntimeError, a.get_subnode, 'a.')
        self.assertRaises(NineMLRuntimeError, a.get_subnode, 'a.X')
        self.assertRaises(NineMLRuntimeError, a.get_subnode, 'a.b.')
        self.assertRaises(NineMLRuntimeError, a.get_subnode, 'a.b.X')

        # Adding to the same namespace twice:
        d1 = ComponentClass(name='D1')
        d2 = ComponentClass(name='D2')
        a = ComponentClass(name='B')

        a.insert_subnode(namespace='d', subnode=d1)
        self.assertRaises(NineMLRuntimeError,
                          a.insert_subnode,
                          namespace='d',
                          subnode=d2)
    def test_aliases(self):
        # Signature: name
        # Forwarding function to self.dynamics.aliases

        # No Aliases:
        self.assertEqual(list(ComponentClass(name='C1').aliases), [])

        # 2 Aliases
        C = ComponentClass(name='C1', aliases=['G:= 0', 'H:=1'])
        self.assertEqual(len(list((C.aliases))), 2)
        self.assertEqual(set(C.aliases_map.keys()), set(['G', 'H']))

        C = ComponentClass(name='C1',
                           aliases=['G:= 0', 'H:=1',
                                    Alias('I', '3')])
        self.assertEqual(len(list((C.aliases))), 3)
        self.assertEqual(set(C.aliases_map.keys()), set(['G', 'H', 'I']))

        # Using DynamicsBlock Parameter:
        C = ComponentClass(
            name='C1', dynamicsblock=DynamicsBlock(aliases=['G:= 0', 'H:=1']))
        self.assertEqual(len(list((C.aliases))), 2)
        self.assertEqual(set(C.aliases_map.keys()), set(['G', 'H']))

        C = ComponentClass(
            name='C1',
            dynamicsblock=DynamicsBlock(
                aliases=['G:= 0', 'H:=1', Alias('I', '3')]))
        self.assertEqual(len(list((C.aliases))), 3)
        self.assertEqual(set(C.aliases_map.keys()), set(['G', 'H', 'I']))

        # Invalid Construction:
        # Invalid Valid String:
        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='C1',
                          aliases=['H=0'])

        # Duplicate Alias Names:
        ComponentClass(name='C1', aliases=['H:=0', 'G:=1'])
        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='C1',
                          aliases=['H:=0', 'H:=1'])

        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='C1',
                          aliases=['H:=0', Alias('H', '1')])

        # Defining through dynamics and Component:
        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['H:=0'],
            dynamicsblock=DynamicsBlock(aliases=['G:=1']),
        )

        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=[Alias('H', '0')],
            dynamicsblock=DynamicsBlock(aliases=[Alias('G', '1')]),
        )

        # Self referential aliases:
        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['H := H +1'],
        )
        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['H := G + 1', 'G := H + 1'],
        )

        # Referencing none existant symbols:
        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['H := G + I'],
            parameters=[],
            analog_ports=[],
        )

        # Invalid Names:
        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['H.2 := 0'],
        )

        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['2H := 0'],
        )

        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['E(H) := 0'],
        )

        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['tanh := 0'],
        )
        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['pi := 0'],
        )
    def test_connect_ports(self):
        # Signature: name(self, src, sink)
        # Connects the ports of 2 subcomponents.
        #
        # The ports can be specified as ``string`` s or ``NamespaceAddresses`` es.
        #
        #
        # :param src: The source port of one sub-component; this should either an
        #     event port or analog port, but it *must* be a send port.
        #
        # :param sink: The sink port of one sub-component; this should either an
        #     event port or analog port, but it *must* be either a 'recv' or a
        #     'reduce' port.

        tIaf = TestableComponent('iaf')
        tCoba = TestableComponent('coba_synapse')

        # Should be fine:
        c = ComponentClass(name='C1',
                           subnodes={
                               'iaf': tIaf(),
                               'coba': tCoba()
                           })
        c.connect_ports('iaf.V', 'coba.V')

        c = ComponentClass(name='C1',
                           subnodes={
                               'iaf': tIaf(),
                               'coba': tCoba()
                           },
                           portconnections=[('iaf.V', 'coba.V')])

        # Non existant Ports:
        c = ComponentClass(name='C1',
                           subnodes={
                               'iaf': tIaf(),
                               'coba': tCoba()
                           })
        self.assertRaises(NineMLRuntimeError, c.connect_ports, 'iaf.V1',
                          'coba.V')
        self.assertRaises(NineMLRuntimeError, c.connect_ports, 'iaf.V',
                          'coba.V1')

        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='C1',
                          subnodes={
                              'iaf': tIaf(),
                              'coba': tCoba()
                          },
                          portconnections=[('iaf.V1', 'coba.V')])

        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='C1',
                          subnodes={
                              'iaf': tIaf(),
                              'coba': tCoba()
                          },
                          portconnections=[('iaf.V', 'coba.V1')])

        # Connect ports the wronf way around:
        # [Check the wright way around works:]
        c = ComponentClass(name='C1',
                           subnodes={
                               'iaf': tIaf(),
                               'coba': tCoba()
                           },
                           portconnections=[('coba.I', 'iaf.ISyn')])
        # And the wrong way around:
        c = ComponentClass(name='C1',
                           subnodes={
                               'iaf': tIaf(),
                               'coba': tCoba()
                           })
        self.assertRaises(NineMLRuntimeError, c.connect_ports, 'iaf.ISyn.',
                          'coba.I')
        self.assertRaises(NineMLRuntimeError, c.connect_ports, 'coba.V',
                          'iaf.V')

        # Error raised on duplicate port-connection:
        c = ComponentClass(
            name='C1',
            subnodes={
                'iaf': tIaf(),
                'coba': tCoba()
            },
        )

        c.connect_ports('coba.I', 'iaf.ISyn')
        self.assertRaises(NineMLRuntimeError, c.connect_ports, 'coba.I',
                          'iaf.ISyn')
    def test_analog_ports(self):
        # Signature: name
        # No Docstring

        c = ComponentClass(name='C1')
        self.assertEqual(len(list(c.analog_ports)), 0)

        c = ComponentClass(name='C1')
        self.assertEqual(len(list(c.analog_ports)), 0)

        c = ComponentClass(name='C1',
                           aliases=['A:=2'],
                           analog_ports=[AnalogSendPort('A')])
        self.assertEqual(len(list(c.analog_ports)), 1)
        self.assertEqual(list(c.analog_ports)[0].mode, 'send')
        self.assertEqual(len(c.query.analog_send_ports), 1)
        self.assertEqual(len(c.query.analog_recv_ports), 0)
        self.assertEqual(len(c.query.analog_reduce_ports), 0)

        c = ComponentClass(name='C1', analog_ports=[AnalogReceivePort('B')])
        self.assertEqual(len(list(c.analog_ports)), 1)
        self.assertEqual(list(c.analog_ports)[0].mode, 'recv')
        self.assertEqual(len(c.query.analog_send_ports), 0)
        self.assertEqual(len(c.query.analog_recv_ports), 1)
        self.assertEqual(len(c.query.analog_reduce_ports), 0)

        c = ComponentClass(name='C1',
                           analog_ports=[AnalogReducePort('B', reduce_op='+')])
        self.assertEqual(len(list(c.analog_ports)), 1)
        self.assertEqual(list(c.analog_ports)[0].mode, 'reduce')
        self.assertEqual(list(c.analog_ports)[0].reduce_op, '+')
        self.assertEqual(len(c.query.analog_send_ports), 0)
        self.assertEqual(len(c.query.analog_recv_ports), 0)
        self.assertEqual(len(c.query.analog_reduce_ports), 1)

        # Duplicate Port Names:
        self.assertRaises(NineMLRuntimeError,
                          ComponentClass,
                          name='C1',
                          aliases=['A:=1'],
                          analog_ports=[
                              AnalogReducePort('B', reduce_op='+'),
                              AnalogSendPort('B')
                          ])

        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['A:=1'],
            analog_ports=[AnalogSendPort('A'),
                          AnalogSendPort('A')])

        self.assertRaises(
            NineMLRuntimeError,
            ComponentClass,
            name='C1',
            aliases=['A:=1'],
            analog_ports=[AnalogReceivePort('A'),
                          AnalogReceivePort('A')])

        self.assertRaises(
            NineMLRuntimeError,
            lambda: ComponentClass(name='C1',
                                   analog_ports=[AnalogReceivePort('1')]))

        self.assertRaises(
            NineMLRuntimeError,
            lambda: ComponentClass(name='C1',
                                   analog_ports=[AnalogReceivePort('?')]))
Exemple #22
0
    def func_test(self):

        emitter = ComponentClass(
            name='EventEmitter',
            parameters=['cyclelength'],
            regimes=[
                Regime(transitions=On('t > tchange + cyclelength',
                                      do=[OutputEvent('emit'), 'tchange=t'])),
            ])

        ev_based_cc = ComponentClass(
            name='EventBasedCurrentClass',
            parameters=['dur', 'i'],
            analog_ports=[SendPort('I')],
            regimes=[
                Regime(transitions=[
                    On('inputevent', do=['I=i', 'tchange = t']),
                    On('t>tchange + dur', do=['I=0', 'tchange=t'])
                ])
            ])

        pulsing_emitter = ComponentClass(name='pulsing_cc',
                                         subnodes={
                                             'evs': emitter,
                                             'cc': ev_based_cc
                                         },
                                         portconnections=[('evs.emit',
                                                           'cc.inputevent')])

        nrn = ComponentClass(
            name='LeakyNeuron',
            parameters=['Cm', 'gL', 'E'],
            regimes=[
                Regime('dV/dt = (iInj + (E-V)*gL )/Cm'),
            ],
            aliases=['iIn := iInj'],
            analog_ports=[SendPort('V'),
                          ReducePort('iInj', reduce_op='+')],
        )

        combined_comp = ComponentClass(name='Comp1',
                                       subnodes={
                                           'nrn': nrn,
                                           'cc1': pulsing_emitter,
                                           'cc2': pulsing_emitter
                                       },
                                       portconnections=[
                                           ('cc1.cc.I', 'nrn.iInj'),
                                           ('cc2.cc.I', 'nrn.iInj')
                                       ])

        combined_comp = flattening.flatten(combined_comp)

        records = [
            RecordValue(what='cc1_cc_I',
                        tag='Current',
                        label='Current Clamp 1'),
            RecordValue(what='cc2_cc_I',
                        tag='Current',
                        label='Current Clamp 2'),
            RecordValue(what='nrn_iIn',
                        tag='Current',
                        label='Total Input Current'),
            RecordValue(what='nrn_V', tag='Voltage', label='Neuron Voltage'),
            RecordValue(what='cc1_cc_tchange',
                        tag='Tchange',
                        label='tChange CC1'),
            RecordValue(what='cc2_cc_tchange',
                        tag='Tchange',
                        label='tChange CC2'),
            RecordValue(what='regime', tag='Regime', label='Regime'),
        ]

        parameters = flattening.ComponentFlattener.flatten_namespace_dict({
            'cc1.cc.i':
            13.8,
            'cc1.cc.dur':
            10,
            'cc1.evs.cyclelength':
            30,
            'cc2.cc.i':
            20.8,
            'cc2.cc.dur':
            5.0,
            'cc2.evs.cyclelength':
            20,
            'nrn.gL':
            4.3,
            'nrn.E':
            -70
        })

        res = std_pynn_simulation(
            test_component=combined_comp,
            parameters=parameters,
            initial_values={},
            synapse_components=[],
            records=records,
            # plot = False,
        )
        return
        t, records = res

        def check_trace(trace_name, time_period, exp_mean, exp_std=0):
            t_indices = (t > time_period[0] + 1) & (t < time_period[1] - 1)
            self.assertAlmostEqual(records[trace_name][t_indices].mean(),
                                   exp_mean,
                                   places=3)
            self.assertAlmostEqual(records[trace_name][t_indices].std(),
                                   exp_std,
                                   places=3)

        check_trace('cc1_cc_I', (00, 30), exp_mean=0.0)
        check_trace('cc1_cc_I', (30, 40), exp_mean=13.8)
        check_trace('cc1_cc_I', (40, 60), exp_mean=0.0)
        check_trace('cc1_cc_I', (60, 70), exp_mean=13.8)
        check_trace('cc1_cc_I', (70, 90), exp_mean=0.0)
        check_trace('cc1_cc_I', (90, 100), exp_mean=13.8)

        check_trace('cc2_cc_I', (00, 20), exp_mean=0.0)
        check_trace('cc2_cc_I', (20, 25), exp_mean=20.8)
        check_trace('cc2_cc_I', (25, 40), exp_mean=0.0)
        check_trace('cc2_cc_I', (40, 45), exp_mean=20.8)
        check_trace('cc2_cc_I', (45, 60), exp_mean=0.0)
        check_trace('cc2_cc_I', (60, 65), exp_mean=20.8)
        check_trace('cc2_cc_I', (65, 80), exp_mean=0.0)
        check_trace('cc2_cc_I', (80, 85), exp_mean=20.8)
        check_trace('cc2_cc_I', (85, 100), exp_mean=0.0)

        check_trace('nrn_iIn', (00, 20), exp_mean=0.0)
        check_trace('nrn_iIn', (20, 25), exp_mean=20.8)
        check_trace('nrn_iIn', (25, 30), exp_mean=0.0)
        check_trace('nrn_iIn', (30, 40), exp_mean=13.8)
        check_trace('nrn_iIn', (40, 45), exp_mean=20.8)
        check_trace('nrn_iIn', (45, 60), exp_mean=0.0)
        check_trace('nrn_iIn', (60, 65), exp_mean=34.6)
        check_trace('nrn_iIn', (65, 70), exp_mean=13.8)
        check_trace('nrn_iIn', (70, 80), exp_mean=0.0)
        check_trace('nrn_iIn', (80, 85), exp_mean=20.8)
        check_trace('nrn_iIn', (85, 90), exp_mean=0.0)
        check_trace('nrn_iIn', (90, 100), exp_mean=13.8)

        check_trace('nrn_V', (00 + 2, 20), exp_mean=(0.0 / 4.3) - 70)
        check_trace('nrn_V', (20 + 2, 25), exp_mean=(20.8 / 4.3) - 70)
        check_trace('nrn_V', (25 + 2, 30), exp_mean=(0.0 / 4.3) - 70)
        check_trace('nrn_V', (30 + 2, 40), exp_mean=(13.8 / 4.3) - 70)
        check_trace('nrn_V', (40 + 2, 45), exp_mean=(20.8 / 4.3) - 70)
        check_trace('nrn_V', (45 + 2, 60), exp_mean=(0.0 / 4.3) - 70)
        check_trace('nrn_V', (60 + 2, 65), exp_mean=(34.6 / 4.3) - 70)
        check_trace('nrn_V', (65 + 2, 70), exp_mean=(13.8 / 4.3) - 70)
        check_trace('nrn_V', (70 + 2, 80), exp_mean=(0.0 / 4.3) - 70)
        check_trace('nrn_V', (80 + 2, 85), exp_mean=(20.8 / 4.3) - 70)
        check_trace('nrn_V', (85 + 2, 90), exp_mean=(0.0 / 4.3) - 70)
        check_trace('nrn_V', (90 + 2, 100), exp_mean=(13.8 / 4.3) - 70)
Exemple #23
0
def get_compound_component():
    """Cannot yet be implemented in PyDSTool
    """
    from nineml.abstraction_layer.testing_utils import RecordValue
    from nineml.abstraction_layer import ComponentClass, Regime, On, OutputEvent, SendPort, ReducePort

    emitter = ComponentClass(
        name='EventEmitter',
        parameters=['cyclelength'],
        regimes=[
            Regime(transitions=On('t > tchange + cyclelength',
                                  do=[OutputEvent('emit'), 'tchange=t'])),
        ])

    ev_based_cc = ComponentClass(
        name='EventBasedCurrentClass',
        parameters=['dur', 'i'],
        analog_ports=[SendPort('I')],
        regimes=[
            Regime(transitions=[
                On('inputevent', do=['I=i', 'tchange = t']),
                On('t>tchange + dur', do=['I=0', 'tchange=t'])
            ])
        ])

    pulsing_emitter = ComponentClass(name='pulsing_cc',
                                     subnodes={
                                         'evs': emitter,
                                         'cc': ev_based_cc
                                     },
                                     portconnections=[('evs.emit',
                                                       'cc.inputevent')])

    nrn = ComponentClass(
        name='LeakyNeuron',
        parameters=['Cm', 'gL', 'E'],
        regimes=[
            Regime('dV/dt = (iInj + (E-V)*gL )/Cm'),
        ],
        aliases=['iIn := iInj'],
        analog_ports=[SendPort('V'),
                      ReducePort('iInj', reduce_op='+')],
    )

    combined_comp = ComponentClass(name='Comp1',
                                   subnodes={
                                       'nrn': nrn,
                                       'cc1': pulsing_emitter,
                                       'cc2': pulsing_emitter
                                   },
                                   portconnections=[('cc1.cc.I', 'nrn.iInj'),
                                                    ('cc2.cc.I', 'nrn.iInj')])

    combined_comp = al.flattening.flatten(combined_comp)

    ##        records = [
    ##            RecordValue(what='cc1_cc_I', tag='Current', label='Current Clamp 1'),
    ##            RecordValue(what='cc2_cc_I', tag='Current', label='Current Clamp 2'),
    ##            RecordValue(what='nrn_iIn', tag='Current', label='Total Input Current'),
    ##            RecordValue(what='nrn_V', tag='Voltage', label='Neuron Voltage'),
    ##            RecordValue(what='cc1_cc_tchange', tag='Tchange', label='tChange CC1'),
    ##            RecordValue(what='cc2_cc_tchange', tag='Tchange', label='tChange CC2'),
    ##            RecordValue(what='regime',     tag='Regime',  label='Regime'),
    ##        ]

    parameters = al.flattening.ComponentFlattener.flatten_namespace_dict({
        'cc1.cc.i':
        13.8,
        'cc1.cc.dur':
        10,
        'cc1.evs.cyclelength':
        30,
        'cc2.cc.i':
        20.8,
        'cc2.cc.dur':
        5.0,
        'cc2.evs.cyclelength':
        20,
        'nrn.gL':
        4.3,
        'nrn.E':
        -70
    })

    return combined_comp, parameters