def group_analysis(design, contrast): """ Compute group analysis effect, t, sd for `design` and `contrast` Saves to disk in 'group' analysis directory Parameters ---------- design : {'block', 'event'} contrast : str contrast name """ array = np.array # shorthand # Directory where output will be written odir = futil.ensure_dir(futil.DATADIR, 'group', design, contrast) # Which subjects have this (contrast, design) pair? subj_con_dirs = futil.subj_des_con_dirs(design, contrast) if len(subj_con_dirs) == 0: raise ValueError('No subjects for %s, %s' % (design, contrast)) # Assemble effects and sds into 4D arrays sds = [] Ys = [] for s in subj_con_dirs: sd_img = load_image(pjoin(s, "sd.nii")) effect_img = load_image(pjoin(s, "effect.nii")) sds.append(sd_img.get_data()) Ys.append(effect_img.get_data()) sd = array(sds) Y = array(Ys) # This function estimates the ratio of the fixed effects variance # (sum(1/sd**2, 0)) to the estimated random effects variance # (sum(1/(sd+rvar)**2, 0)) where rvar is the random effects variance. # The EM algorithm used is described in: # # Worsley, K.J., Liao, C., Aston, J., Petre, V., Duncan, G.H., # Morales, F., Evans, A.C. (2002). \'A general statistical # analysis for fMRI data\'. NeuroImage, 15:1-15 varest = onesample.estimate_varatio(Y, sd) random_var = varest['random'] # XXX - if we have a smoother, use # random_var = varest['fixed'] * smooth(varest['ratio']) # Having estimated the random effects variance (and possibly smoothed it), # the corresponding estimate of the effect and its variance is computed and # saved. # This is the coordmap we will use coordmap = futil.load_image_ds105("fiac_00", "wanatomical.nii").coordmap adjusted_var = sd**2 + random_var adjusted_sd = np.sqrt(adjusted_var) results = onesample.estimate_mean(Y, adjusted_sd) for n in ['effect', 'sd', 't']: im = api.Image(results[n], copy(coordmap)) save_image(im, pjoin(odir, "%s.nii" % n))
def test_save4(): # Same as test_save3 except we have reordered the 'ijk' input axes. shape = (13, 5, 7, 3) step = np.array([3.45, 2.3, 4.5, 6.9]) # When the input coords are in the 'ljki' order, the affines get # rearranged. Note that the 'start' below, must be 0 for # non-spatial dimensions, because we have no way to store them in # most cases. For example, a 'start' of [1,5,3,1] would be lost on # reload mni_xyz = mni_csm(3).coord_names cmap = AT(CS('tkji'), CS((('t', ) + mni_xyz[::-1])), from_matvec(np.diag([2., 3, 5, 1]), step)) data = np.random.standard_normal(shape) img = api.Image(data, cmap) with InTemporaryDirectory(): save_image(img, TMP_FNAME) tmp = load_image(TMP_FNAME) data = tmp.get_data().copy() # Detach image from file so we can delete it img2 = api.Image(data, tmp.coordmap, tmp.metadata) del tmp P = np.array([[0, 0, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]) res = np.dot(P, np.dot(img.affine, P.T)) # the step part of the affine should be set correctly assert_array_almost_equal(res[:4, :4], img2.affine[:4, :4]) # start in the spatial dimensions should be set correctly assert_array_almost_equal(res[:3, -1], img2.affine[:3, -1]) # start in the time dimension should be 3.45 as in img, because NIFTI stores # the time offset in hdr[``toffset``] assert_not_equal(res[3, -1], img2.affine[3, -1]) assert_equal(res[3, -1], 3.45) # shapes should be reversed because img has coordinates reversed assert_equal(img.shape[::-1], img2.shape) # data should be transposed because coordinates are reversed assert_array_almost_equal(np.transpose(img2.get_data(), [3, 2, 1, 0]), img.get_data()) # coordinate names should be reversed as well assert_equal(img2.coordmap.function_domain.coord_names, img.coordmap.function_domain.coord_names[::-1]) assert_equal(img2.coordmap.function_domain.coord_names, ('i', 'j', 'k', 't'))
def fixed_effects(subj, design): """ Fixed effects (within subject) for OpenfMRI ds105 model Finds run by run estimated model results, creates fixed effects results image per subject. Parameters ---------- subj : int subject number 1..6 inclusive design : {'standard'} design type """ # First, find all the effect and standard deviation images # for the subject and this design type path_dict = futil.path_info_design(subj, design) rootdir = path_dict['rootdir'] # The output directory fixdir = pjoin(rootdir, "fixed") # Fetch results images from run estimations results = futil.results_table(path_dict) # Get our hands on the relevant coordmap to save our results coordmap = futil.load_image_ds105("_%02d" % subj, "wanatomical.nii").coordmap # Compute the "fixed" effects for each type of contrast for con in results: fixed_effect = 0 fixed_var = 0 for effect, sd in results[con]: effect = load_image(effect).get_data() sd = load_image(sd).get_data() var = sd**2 # The optimal, in terms of minimum variance, combination of the # effects has weights 1 / var # # XXX regions with 0 variance are set to 0 # XXX do we want this or np.nan? ivar = np.nan_to_num(1. / var) fixed_effect += effect * ivar fixed_var += ivar # Now, compute the fixed effects variance and t statistic fixed_sd = np.sqrt(fixed_var) isd = np.nan_to_num(1. / fixed_sd) fixed_t = fixed_effect * isd # Save the results odir = futil.ensure_dir(fixdir, con) for a, n in zip([fixed_effect, fixed_sd, fixed_t], ['effect', 'sd', 't']): im = api.Image(a, copy(coordmap)) save_image(im, pjoin(odir, '%s.nii' % n))
def test_save3(): # A test to ensure that when a file is saved, the affine # and the data agree. In this case, things don't agree: # i) the pixdim is off # ii) makes the affine off step = np.array([3.45, 2.3, 4.5, 6.9]) shape = (13, 5, 7, 3) mni_xyz = mni_csm(3).coord_names cmap = AT(CS('jkli'), CS(('t', ) + mni_xyz[::-1]), from_matvec(np.diag([0, 3, 5, 1]), step)) data = np.random.standard_normal(shape) img = api.Image(data, cmap) # with InTemporaryDirectory(): with InTemporaryDirectory(): save_image(img, TMP_FNAME) tmp = load_image(TMP_FNAME) # Detach image from file so we can delete it data = tmp.get_data().copy() img2 = api.Image(data, tmp.coordmap, tmp.metadata) del tmp assert_equal(tuple([img.shape[l] for l in [3, 2, 1, 0]]), img2.shape) a = np.transpose(img.get_data(), [3, 2, 1, 0]) assert_false(np.allclose(img.affine, img2.affine)) assert_true(np.allclose(a, img2.get_data()))
def test_save2(): # A test to ensure that when a file is saved, the affine and the # data agree. This image comes from a NIFTI file shape = (13, 5, 7, 3) step = np.array([3.45, 2.3, 4.5, 6.93]) cmap = api.AffineTransform.from_start_step('ijkt', 'xyzt', [1, 3, 5, 0], step) data = np.random.standard_normal(shape) img = api.Image(data, cmap) with InTemporaryDirectory(): save_image(img, TMP_FNAME) img2 = load_image(TMP_FNAME) assert_array_almost_equal(img.affine, img2.affine) assert_equal(img.shape, img2.shape) assert_array_almost_equal(img2.get_data(), img.get_data()) del img2
def test_save2b(): # A test to ensure that when a file is saved, the affine and the # data agree. This image comes from a NIFTI file. This example has a # non-diagonal affine matrix for the spatial part, but is 'diagonal' for the # space part. # # make a 5x5 transformation (for 4d image) step = np.array([3.45, 2.3, 4.5, 6.9]) A = np.random.standard_normal((3, 3)) B = np.diag(list(step) + [1]) B[:3, :3] = A shape = (13, 5, 7, 3) cmap = api.vox2mni(B) data = np.random.standard_normal(shape) img = api.Image(data, cmap) with InTemporaryDirectory(): save_image(img, TMP_FNAME) img2 = load_image(TMP_FNAME) assert_array_almost_equal(img.affine, img2.affine) assert_equal(img.shape, img2.shape) assert_array_almost_equal(img2.get_data(), img.get_data()) del img2