def test_ImageMeants_outputs(): output_map = dict(out_file=dict(), ) outputs = ImageMeants.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def extract_eigenv_roi(bold_image, mask, csvpath, sub, run): """ Use fsl.ImageMeants to extract eigenvariate """ if not os.path.exists(csvpath): os.makedirs(csvpath) extract_eigv = ImageMeants(in_file=bold_image, terminal_output='file', eig=True, mask=mask, out_file=os.path.join( csvpath, '{}_{}_{}.csv'.format( sub, run, mask.replace('_mask.nii.gz', '')[-4:]))) extract_eigv.run()
def test_ImageMeants_inputs(): input_map = dict(args=dict(argstr='%s', ), eig=dict(argstr='--eig', ), environ=dict(nohash=True, usedefault=True, ), ignore_exception=dict(nohash=True, usedefault=True, ), in_file=dict(argstr='-i %s', mandatory=True, position=0, ), mask=dict(argstr='-m %s', ), nobin=dict(argstr='--no_bin', ), order=dict(argstr='--order=%d', usedefault=True, ), out_file=dict(argstr='-o %s', genfile=True, hash_files=False, ), output_type=dict(), show_all=dict(argstr='--showall', ), spatial_coord=dict(argstr='-c %s', ), terminal_output=dict(mandatory=True, nohash=True, ), transpose=dict(argstr='--transpose', ), use_mm=dict(argstr='--usemm', ), ) inputs = ImageMeants.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value
# #"sub-184420", ¿?¿?¿? NO BOLD # "sub-185225","sub-187232", "sub-48296", "sub-49664", "sub-50000", "sub-73417", "sub-84766", "sub-86143", "sub-88604", "sub-92889", "sub-92918", "sub-93338" ] #extracting timesieries extraction = ImageMeants() for subject_id in list_subjs: #defines WF wf_reg = get_nuisance_regressors_wf(outdir=root_path + '/nuisance_correction', subject_id=subject_id, timepoints=490) #sets necessary inputs wf_reg.inputs.input_node.realign_movpar_txt = root_path + '/fmri2standard/{subject_id}/realign_fmri2SBref/{subject_id}_ses-01_run-01_rest_bold_ap_roi_mcf.nii.gz.par'.format( subject_id=subject_id) wf_reg.inputs.input_node.rfmri_unwarped_imgs = root_path + '/fmri2standard/{subject_id}/spm_coregister2T1_bold/{subject_id}_ses-01_run-01_rest_bold_ap_roi_mcf_corrected_coregistered2T1.nii.gz'.format( subject_id=subject_id) #wf_reg.inputs.input_node.masks_imgs = root_path+'/nuisance_correction/{subject_id}/masks_csf_wm/wm_binmask.nii.gz'.format(subject_id=subject_id) wf_reg.inputs.input_node.mask_wm = root_path + '/nuisance_correction/{subject_id}/masks_csf_wm/wm_binmask.nii.gz'.format(
selectfiles = Node(SelectFiles(templates), name='selectfiles') # Datasink- where our select outputs will go datasink = Node(DataSink(), name='datasink') datasink.inputs.base_directory = output_dir datasink.inputs.container = output_dir substitutions = [('_subject_id_', ''), ('_ROIs_..home..camachocm2..Box_home..CARS_rest..ROIs..', '')] datasink.inputs.substitutions = substitutions # In[3]: ## Seed-based level 1 # Extract ROI timeseries ROI_timeseries = Node(ImageMeants(), name='ROI_timeseries', iterfield='mask') def converthex(orig): from numpy import genfromtxt, savetxt from os.path import abspath orig = genfromtxt(orig, delimiter=' ', dtype=None, skip_header=0) new = 'func_roi_ts.txt' savetxt(new, orig, delimiter=' ') new_file = abspath(new) return (new_file) converthex = Node(name='converthex',