Exemple #1
0
def init_prepare_epi_wf(ants_nthreads, name="prepare_epi_wf"):
    """
    This workflow takes in a set of EPI files with with the same phase
    encoding direction and returns a single 3D volume ready to be used in
    field distortion estimation.

    The procedure involves: estimating a robust template using FreeSurfer's
    'mri_robust_template', bias field correction using ANTs N4BiasFieldCorrection
    and AFNI 3dUnifize, skullstripping using FSL BET and AFNI 3dAutomask,
    and rigid coregistration to the reference using ANTs.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.unwarp import init_prepare_epi_wf
        wf = init_prepare_epi_wf(ants_nthreads=8)


    Inputs

        fmaps
            list of 3D or 4D NIfTI images
        ref_brain
            coregistration reference (skullstripped and bias field corrected)

    Outputs

        out_file
            single 3D NIfTI file

    """
    inputnode = pe.Node(niu.IdentityInterface(fields=['fmaps', 'ref_brain']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['out_file']),
                         name='outputnode')

    split = pe.MapNode(fsl.Split(dimension='t'),
                       iterfield='in_file',
                       name='split')

    merge = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,
            fixed_timepoint=True,  # Align to first image
            intensity_scaling=True,
            # 7-DOF (rigid + intensity)
            no_iteration=True,
            subsample_threshold=200,
            out_file='template.nii.gz'),
        name='merge')

    enhance_and_skullstrip_epi_wf = init_enhance_and_skullstrip_epi_wf()

    ants_settings = pkgr.resource_filename('fmriprep',
                                           'data/translation_rigid.json')
    fmap2ref_reg = pe.Node(ants.Registration(from_file=ants_settings,
                                             output_warped_image=True,
                                             num_threads=ants_nthreads),
                           name='fmap2ref_reg')
    fmap2ref_reg.interface.num_threads = ants_nthreads

    workflow = pe.Workflow(name=name)

    def _flatten(l):
        return [item for sublist in l for item in sublist]

    workflow.connect([
        (inputnode, split, [('fmaps', 'in_file')]),
        (split, merge, [(('out_files', _flatten), 'in_files')]),
        (merge, enhance_and_skullstrip_epi_wf, [('out_file',
                                                 'inputnode.in_file')]),
        (enhance_and_skullstrip_epi_wf, fmap2ref_reg,
         [('outputnode.skull_stripped_file', 'moving_image')]),
        (inputnode, fmap2ref_reg, [('ref_brain', 'fixed_image')]),
        (fmap2ref_reg, outputnode, [('warped_image', 'out_file')]),
    ])

    return workflow
Exemple #2
0
def init_bold_hmc_wf(bold_file_size_gb, omp_nthreads, name='bold_hmc_wf'):
    """
    This workflow performs :abbr:`HMC (head motion correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_hmc_wf
        wf = init_bold_hmc_wf(bold_file_size_gb=3, omp_nthreads=1)

    **Parameters**

        bold_file_size_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_hmc_wf``)

    **Inputs**

        bold_file
            BOLD series NIfTI file
        raw_ref_image
            Reference image to which BOLD series is motion corrected

    **Outputs**

        bold_split
            Individual 3D volumes, not motion corrected
        xforms
            ITKTransform file aligning each volume to ``ref_image``
        movpar_file
            MCFLIRT motion parameters, normalized to SPM format (X, Y, Z, Rx, Ry, Rz)

    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'raw_ref_image']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_split', 'xforms', 'movpar_file']),
        name='outputnode')

    # Head motion correction (hmc)
    mcflirt = pe.Node(fsl.MCFLIRT(save_mats=True, save_plots=True),
                      name='mcflirt',
                      mem_gb=bold_file_size_gb * 3)

    fsl2itk = pe.Node(MCFLIRT2ITK(),
                      name='fsl2itk',
                      mem_gb=0.05,
                      n_procs=omp_nthreads)

    normalize_motion = pe.Node(NormalizeMotionParams(format='FSL'),
                               name="normalize_motion",
                               mem_gb=DEFAULT_MEMORY_MIN_GB)

    split = pe.Node(fsl.Split(dimension='t'),
                    name='split',
                    mem_gb=bold_file_size_gb * 3)

    workflow.connect([
        (inputnode, split, [('bold_file', 'in_file')]),
        (inputnode, mcflirt, [('raw_ref_image', 'ref_file'),
                              ('bold_file', 'in_file')]),
        (inputnode, fsl2itk, [('raw_ref_image', 'in_source'),
                              ('raw_ref_image', 'in_reference')]),
        (mcflirt, fsl2itk, [('mat_file', 'in_files')]),
        (mcflirt, normalize_motion, [('par_file', 'in_file')]),
        (fsl2itk, outputnode, [('out_file', 'xforms')]),
        (normalize_motion, outputnode, [('out_file', 'movpar_file')]),
        (split, outputnode, [('out_files', 'bold_split')]),
    ])

    return workflow