Exemple #1
0
def extract_command(string: str):
    l = enums.DependencyEdge.Label
    tokens = process(string)

    # Find the command's verb
    line_verbs = get_token_by_pos(tokens, enums.PartOfSpeech.Tag.VERB)
    candidate_verbs = [
        v for v in line_verbs if v.text.content.lower() in known_verbs
    ]

    if len(candidate_verbs) == 0:
        print("ERROR: No relevant verbs found")
        return None

    verb = candidate_verbs[0]

    def get_possessive(token):
        x = token.get_dependant(l.PREP)
        y = x.get_dependant(l.POBJ)
        z = token.get_dependant(l.DOBJ)
        return y or x or z

    def get_num(token):
        return token.get_dependant(l.NUM)

    def get_context(token):
        return token.get_dependant(l.AMOD)

    pos = get_possessive(verb)

    print("NUMBER", get_num(pos))
    print("CONTEXT", get_context(pos))
    print("VERB", verb)
    print("TARGET", pos)
Exemple #2
0
def analyze(data):
	query = nlp.process(data)
	response = {}
	if(query['type'] == "wiki"):
		response = encyclopedia(query['subject'])
	if(query['type'] == "calc"):
		response = calculator.main(query['subject'])
	if(query['type'] == "error"):
		response = query
	return response
Exemple #3
0
def process(input, output):
    """Convert a text file to a document.

    Parameters
    ----------
    input : str
        Filepath for the input text file.
    
    output : str, optional
        Filepath for the output document database. If none provided, defaults to an in-memory database.

    See Also
    --------
    `nlp.process` - the core functionality of this command-line procedure.
    """
    import nlp
    # connect to the output db (defaults to in-memory)
    with orm.Connection(output) as mapping:
        # read the provided doc and process all the lines
        logger.info(f"Processing file {input}...")
        with open(input, "r") as f:
            text = f.read()
            nlp.process(text, mapping)
        logger.info(f"Processing of file {input} complete.")
Exemple #4
0
 def to_presses(cls, command):
     tokens = process(command)
     render_tokens(tokens)
     return extract_command(tokens)
Exemple #5
0
from nlp import process, render_tokens, to_ir
from voicerec import voice_command_generator

for command in voice_command_generator('hey google'):
    tokens = process(command)

    render_tokens(tokens)

    print(to_ir(tokens))
Exemple #6
0
def note_to_smartnote(note):
    smart_note = nlp.process(note)

    print(smart_note)
    return smart_note
Exemple #7
0
def view(id):
    #received_text2, new_received, number_of_tokens, blob_sentiment, blob_subjectivity, summary, final_time, len_of_words, pos, neg, training, test=process(id)
    received_text2, new_received, number_of_tokens, blob_sentiment, blob_subjectivity, summary, final_time, len_of_words, markstop = process(id)
    # print(pos)
    # print(neg)
    # print(training)
    return render_template('dataset_view.html', received_text=received_text2, new_received=new_received, number_of_tokens=number_of_tokens,
                           blob_sentiment=blob_sentiment, blob_subjectivity=blob_subjectivity, summary=summary,
                           final_time=final_time, len=len_of_words, dt=dt, id=id, df=df, markstop=markstop)
Exemple #8
0
data_dir = 'clue/data'
statements_dir = 'statements'

person_data = {}
statement_data = {}

with open(os.path.join(data_dir, 'persons.json')) as f:
    for person in json.load(f)['items']:
        person_data[person['fullName'].lower().replace(' ', '-')] = person

persons_statements = defaultdict(list)
statements_persons = defaultdict(list)

for fn in glob(os.path.join(statements_dir, 'statement-*.txt')):
    statement_key = os.path.basename(fn).replace('.txt', '')
    doc = process(fn)
    doc.user_data['title'] = statement_key
    statement_data[statement_key] = doc

    person_ents = set([ent for ent in doc.ents if ent.label_ == 'PERSON'])

    for ent in person_ents:
        person_key = ent.text.lower().replace(' ', '-')
        person = person_data.get(person_key, None)

        if person:
            persons_statements[person_key].append(statement_key)
            statements_persons[statement_key].append(person_key)

person_data = {
    id: person