Exemple #1
0
from keras.preprocessing import sequence
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.datasets import imdb
from nlp_code.get_data import input_data
max_features = 20000
maxlen = 100  # cut texts after this number of words (among top max_features most common words)
batch_size = 32

print('Loading data...')
# (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features,
#                                                       test_split=0.2)
X_train, y_train, X_test, y_test = input_data()
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')

print("Pad sequences (samples x time)")
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
#(samples, dim)
print('X_test shape:', X_test.shape)
#Y  1, 0
print('Build model...')
model = Sequential()
# model.add(Embedding(max_features, 128, input_length=maxlen, dropout=0.5))
model.add(Embedding(max_features, 128, input_length=maxlen))
# model.add(LSTM(128, dropout_W=0.5, dropout_U=0.5))  # try using a GRU instead, for fun
Exemple #2
0
from nlp_code.get_data import input_data_gen_w2v, input_data_w2v, input_data

__author__ = 'bohaohan'
from keras.models import Sequential
from keras.layers import LSTM, Dense, Embedding
import numpy as np
print('Loading data...')
x_train, y_train, x_val, y_val = input_data()
print "end load"

data_dim = 300
timesteps = len(x_train[0])
nb_classes = 1
nb_epoch = 2000
print "build model"
# expected input data shape: (batch_size, timesteps, data_dim)
model = Sequential()

model.add(Embedding(1, 128, input_length=timesteps))

model.add(LSTM(200, return_sequences=True))
# ,input_shape=(timesteps, data_dim)))  # returns a sequence of vectors of dimension 32
model.add(LSTM(
    100,
    return_sequences=True))  # returns a sequence of vectors of dimension 32
model.add(LSTM(32))  # return a single vector of dimension 32
model.add(Dense(nb_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
print "finish model"
# generate dummy training data
Exemple #3
0
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.datasets import imdb
from nlp_code.get_data import input_data

max_features = 20000
maxlen = 100  # cut texts after this number of words (among top max_features most common words)
batch_size = 32

print('Loading data...')
# (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features,
#                                                       test_split=0.2)
X_train, y_train, X_test, y_test = input_data()
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')

print("Pad sequences (samples x time)")
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
#(samples, dim)
print('X_test shape:', X_test.shape)
#Y  1, 0
print('Build model...')
model = Sequential()
# model.add(Embedding(max_features, 128, input_length=maxlen, dropout=0.5))
model.add(Embedding(max_features, 128, input_length=maxlen))
# model.add(LSTM(128, dropout_W=0.5, dropout_U=0.5))  # try using a GRU instead, for fun
Exemple #4
0
'''

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils

import random, cPickle


from nlp_code.get_data import input_data


# load data
data, label = input_data()
# shuffle data
index = [i for i in range(len(data))]
random.shuffle(index)
data = data[index]
data = data/255
label = label[index]
print(data.shape[0], ' samples')

# 20 classes, transform labels into the format requirement of keras is binary class matrices
label = np_utils.to_categorical(label, 20)
# print (data)
###############
# start to build CNN model
###############
Exemple #5
0
from nlp_code.get_data import input_data_gen_w2v, input_data_w2v, input_data

__author__ = 'bohaohan'
from keras.models import Sequential
from keras.layers import LSTM, Dense, Embedding
import numpy as np
print('Loading data...')
x_train, y_train, x_val, y_val = input_data()
print "end load"

data_dim = 300
timesteps = len(x_train[0])
nb_classes = 1
nb_epoch = 2000
print "build model"
# expected input data shape: (batch_size, timesteps, data_dim)
model = Sequential()

model.add(Embedding(1, 128, input_length=timesteps))

model.add(LSTM(200, return_sequences=True))
               # ,input_shape=(timesteps, data_dim)))  # returns a sequence of vectors of dimension 32
model.add(LSTM(100, return_sequences=True))  # returns a sequence of vectors of dimension 32
model.add(LSTM(32))  # return a single vector of dimension 32
model.add(Dense(nb_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
print "finish model"
# generate dummy training data

Exemple #6
0
    CPU run command:
        python cnn.py
'''

from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils

import random, cPickle

from nlp_code.get_data import input_data

# load data
data, label = input_data()
# shuffle data
index = [i for i in range(len(data))]
random.shuffle(index)
data = data[index]
data = data / 255
label = label[index]
print(data.shape[0], ' samples')

# 20 classes, transform labels into the format requirement of keras is binary class matrices
label = np_utils.to_categorical(label, 20)
# print (data)
###############
# start to build CNN model
###############