def main(num_epochs: int = 100, batch_size: int = 128):
    args = {
        "news_csv": "data/news_with_splits.csv",
        "save_dir": "model_storage/yelp/",
        "model_state_file": "model.pth",
        "glove_filepath": "data/glove.6B.100d.txt",
        "vectorizer_file": "vectorizer.json",
        "use_glove": False,
        "embedding_size": 100,
        "hidden_dim": 100,
        "num_channels": 100,
        "learning_rate": 0.001,
        "num_epochs": num_epochs,
        "batch_size": batch_size,
        "early_stopping_criteria": 5,
        "frequency_cutoff": 25,
        "dropout_p": 0.1,
        "cuda": False,
    }
    train_state = make_train_state()

    if torch.cuda.is_available():
        args["cuda"] = True
    args["device"] = torch.device("cuda:0" if args["cuda"] else "cpu")
    print(args)

    dataset = NewsDataset.load_dataset_and_make_vectorizer(args["news_csv"])
    vectorizer = dataset.vectorizer

    words = vectorizer.title_vocab._token_to_idx.keys()
    embeddings = make_embedding_matrix(glove_filepath=args["glove_filepath"], words=words)

    classifier = NewsClassifier(
        embedding_size=args["embedding_size"],
        num_embeddings=len(vectorizer.title_vocab),
        num_channels=args["num_channels"],
        hidden_dim=args["hidden_dim"],
        num_classes=len(vectorizer.title_vocab),
        dropout_p=args["dropout_p"],
        pretrained_embeddings=torch.from_numpy(embeddings),
    )
    classifier = classifier.to(args["device"])
    classifier.double()

    loss_func = CrossEntropyLoss()
    optimizer = Adam(classifier.parameters(), lr=args["learning_rate"])

    train(args, train_state, dataset, classifier, optimizer, loss_func, compute_accuracy)

    return {
        "train_state": train_state,
        "args": args,
        "dataset": dataset,
        "classifier": classifier,
        "loss_func": loss_func,
        "optimizer": optimizer,
    }
Exemple #2
0
def main(batch_size: int = 128, num_epochs: int = 100, hidden_dim: int = 100):
    args = {
        "hidden_dim": hidden_dim,
        "num_channels": 256,
        "surname_csv": "data/surnames_with_splits.csv",
        "save_dir": "model_storage/yelp/",
        "model_state_file": "model.pth",
        "vectorizer_file": "vectorizer.json",
        "learning_rate": 0.001,
        "num_epochs": num_epochs,
        "batch_size": batch_size,
        "early_stopping_criteria": 5,
        "frequency_cutoff": 25,
        "cuda": False,
    }
    train_state = make_train_state()

    if torch.cuda.is_available():
        args["cuda"] = True
    args["device"] = torch.device("cuda:0" if args["cuda"] else "cpu")
    print(args)

    dataset = SurnameDataset.load_dataset_and_make_vectorizer(
        args["surname_csv"], SurnameVectorizer.from_dataframe)
    vectorizer = dataset.vectorizer

    classifier = SurnameCnnClassifier(
        initial_num_channels=len(vectorizer.surname_vocab),
        num_classes=len(vectorizer.nationality_vocab),
        num_channels=args["num_channels"],
    )
    classifier = classifier.to(args["device"])

    loss_func = CrossEntropyLoss(dataset.class_weights)
    optimizer = Adam(classifier.parameters(), lr=args["learning_rate"])

    train(args, train_state, dataset, classifier, optimizer, loss_func,
          compute_accuracy)

    return {
        "train_state": train_state,
        "args": args,
        "dataset": dataset,
        "classifier": classifier,
        "loss_func": loss_func,
        "optimizer": optimizer,
    }
Exemple #3
0
def main(num_epochs: int = 100, batch_size: int = 128):
    args = {
        "cbow_csv": "data/frankenstein_with_splits.csv",
        "save_dir": "model_storage/yelp/",
        "model_state_file": "model.pth",
        "vectorizer_file": "vectorizer.json",
        "embedding_size": 300,
        "learning_rate": 0.001,
        "num_epochs": num_epochs,
        "batch_size": batch_size,
        "early_stopping_criteria": 5,
        "frequency_cutoff": 25,
        "cuda": False,
    }
    train_state = make_train_state()

    if torch.cuda.is_available():
        args["cuda"] = True
    args["device"] = torch.device("cuda:0" if args["cuda"] else "cpu")
    print(args)

    dataset = CbowDataset.load_dataset_and_make_vectorizer(args["cbow_csv"])
    vectorizer = dataset.vectorizer

    classifier = CbowClassifier(
        vocabulary_size=len(vectorizer.cbow_vocab),
        embedding_size=args["embedding_size"],
    )
    classifier = classifier.to(args["device"])

    loss_func = CrossEntropyLoss()
    optimizer = Adam(classifier.parameters(), lr=args["learning_rate"])

    train(args, train_state, dataset, classifier, optimizer, loss_func,
          compute_accuracy)

    return {
        "train_state": train_state,
        "args": args,
        "dataset": dataset,
        "classifier": classifier,
        "loss_func": loss_func,
        "optimizer": optimizer,
    }
Exemple #4
0
def main(batch_size: int = 128, num_epochs: int = 100):
    args = {
        "review_csv": "data/yelp_reviews_lite.json",
        "save_dir": "model_storage/yelp/",
        "model_state_file": "model.pth",
        "vectorizer_file": "vectorizer.json",
        "learning_rate": 0.001,
        "num_epochs": num_epochs,
        "batch_size": batch_size,
        "early_stopping_criteria": 5,
        "frequency_cutoff": 25,
        "cuda": False,
    }
    train_state = make_train_state()

    if torch.cuda.is_available():
        args["cuda"] = True
    args["device"] = torch.device("cuda:0" if args["cuda"] else "cpu")
    print(args)

    dataset = ReviewDataset.load_dataset_and_make_vectorizer(
        args["review_csv"])
    vectorizer = dataset.vectorizer

    classifier = ReviewClassifier(num_features=len(vectorizer.review_vocab))
    classifier = classifier.to(args["device"])

    loss_func = nn.BCEWithLogitsLoss()
    optimizer = optim.Adam(classifier.parameters(), lr=args["learning_rate"])

    train(args, train_state, dataset, classifier, optimizer, loss_func,
          compute_accuracy)

    return {
        "train_state": train_state,
        "args": args,
        "dataset": dataset,
        "classifier": classifier,
        "loss_func": loss_func,
        "optimizer": optimizer,
    }