Exemple #1
0
import nlpio

if __name__ == '__main__':
    #print nlpio.parseDocFile('data/duc2004/docs/d30001t/APW19981016.0240')
    documents = nlpio.loadDocumentsFromFile('testset.txt')
    predictions = [doc.peers[0] for doc in documents] #using the given predictions
    print nlpio.evaluateRouge(documents,predictions)
    predictions = ['lorem ipsum dolor' for doc in documents] #using own predictions
    print nlpio.evaluateRouge(documents,predictions)
Exemple #2
0
    #TODO: make better
    def __init__(self):
        pass

    def fit(self,documents,y=None):
        return self

    def transform(self,documents):
        for doc in documents:
            print 'Parsing: ' + doc.name
            doc.ext['coreNLP'] = nlpio.stanfordParse(doc.text)
        return documents

if __name__ == '__main__':
    docs = nlpio.loadDocumentsFromFile(
        'testset.txt',
        # 'testset_all.txt',
        'data/eval/models/1/', 'data/eval/peers/1/')

    print 'Do Cleanup...'
    textCleaner = SimpleTextCleaner()
    textCleaner.transform(docs)

    print 'Writing file and start coreNLP processing...'

    # Writing out the individual files.
    for doc in docs:
        write_file('tmp/' + doc.name, doc.text)

    # Writing the filelist
    write_file('tmp/filelist.txt', '\n'.join(
        ['tmp/' + doc.name for doc in docs]))