Exemple #1
0
def run(filename, iterations):
    # global variables utilized in the assessment of the IBM Model
    global ibm2
    global corpus

    # construct and modify corpus by adding the system alignments to every sentence pair    
    corpus = compile_corpus(filename)
    ibm2 = IBMModel2(corpus, iterations)

    # produce the alignments of the test sentences
    get_alignments("data/evaluation tests/test sentences/test.spanish")
Exemple #2
0
def IBM1_IBM2(filename):
	file = json.load(open(filename))
    #print("Corpus:"filename)

	#to store sentences
	fr_sentence = []
	en_sentence = []

	#to store translation probability

	#append each sentence into lists
	for i in range(len(file)):    
	    fr_sentence.append(file[i]['fr'])
	    en_sentence.append(file[i]['en'])
	    

	n = len(en_sentence)

	bitext = []


	#store all words in sets 

	for i in range(n):                 
	    en_word = en_sentence[i].split(' ')    
	    fr_word = fr_sentence[i].split(' ')    
	    bitext.append(AlignedSent(fr_word, en_word))


	ibm1 = IBMModel1(bitext, 2000)
	#ibm2 = IBMModel2(bitext, 2000)
	for i in range(n) :
		test_sentence = bitext[i]
		print(test_sentence.words)
		print(test_sentence.mots)
		print("Alignment according to IBM1 nltk model :")
		print(test_sentence.alignment)
		print('\n\n')
        
    
	ibm2 = IBMModel2(bitext, 2000)
	
	for i in range(n):
		test_sentence = bitext[i]
		print(test_sentence.words)
		#print('\n')
		print(test_sentence.mots)
		#print('\n')
		print("Alignment according to IBM2 nltk model : ")
		print(test_sentence.alignment)
		print('\n\n')
Exemple #3
0
def compare_a_nltk_train(t_ibm1, max_steps, src, tar):
	print('Compare nltk to train() implementation:')
	#train() implementation
	max_le = max([len(e) for e in src])
	max_lf = max([len(f) for f in tar])
	en_word_dict, tk_word_dict = dicts_for_train_comparison(src, tar)
	num_of_e_word = len(en_word_dict)
	num_of_f_word = len(tk_word_dict)
	t_e2f_ibm1_matrix = np.full((num_of_e_word, num_of_f_word), 0, dtype=float)
	for (e_j, f_i), t_val in t_ibm1.items():
		t_e2f_ibm1_matrix[en_word_dict[e_j]][tk_word_dict[f_i]] = t_val
	t_e_f_mat, a_i_le_lf_mat = train(t_e2f_ibm1_matrix, en_word_dict, tk_word_dict, src, tar, max_le, max_lf,
	                                 max_steps / 6)
	#nltk implementation
	aligned = test_sets_to_aligned(src, tar)
	ibm2 = IBMModel2(aligned, max_steps)
	a = ibm2.alignment_table
	t = ibm2.translation_table
	correct0 = 0
	sum = 0
	for i, REST1 in enumerate(a_i_le_lf_mat):
		for j, REST2 in enumerate(REST1):
			for l_f, REST3 in enumerate(REST2):
				for l_e, val in enumerate(REST3):
					#if val != 0:   print('ot',i,j,l_e+1,l_f+1, val)
					bool_ = (a[j][i][l_f+1][l_e+1] > 0.7) == (val > 0.7)
					if bool_ == False:
						if DEBUG: print('wrong a:', a[j][i][l_f+1][l_e+1], '!=', val, 'for i', i, ' j',j, ' l_e', l_e, ' l_f', l_f)
					else:
						correct0 += 1
					sum += 1
	print('a values ', 100 * (correct0 / sum), '% correct,', correct0, 'values wrong.\n')

	en_word_dict, tk_word_dict = dicts_for_train_comparison(src, tar)
	correct0 = 0
	sum = 0
	for sentence, srcs in enumerate(src):
		tars = tar[sentence]
		for index, eng_word in enumerate(srcs):  # for all words
			for index, tur_word in enumerate(tars):  # for all words
				idx_tur_in_dict = tk_word_dict[tur_word]
				idx_eng_in_dict = en_word_dict[eng_word]
				if idx_tur_in_dict < t_e_f_mat.shape[0] and idx_eng_in_dict < t_e_f_mat.shape[1]:
					val = t_e_f_mat[idx_tur_in_dict][idx_eng_in_dict]
					bool_ = (t[f_i][e_j] > 0.7) == (val > 0.7)
					if bool_ == False:
						if DEBUG: print('wrong a:', t[f_i][e_j], '!=', val, 'for i', i, ' j', j, ' l_e', l_e, ' l_f', l_f)
					else:
						correct0 += 1
				sum += 1
	print('t values ', 100 * (correct0 / sum), '% correct,', correct0, 'values wrong.\n')
Exemple #4
0
def use_IBM2(corpus,settings):
	'''
	Gives back the result on a corpus containing Aligned Objects, on using IBM Model 2
	Inputs:
		corpus = A list of Alignment Objects, which inturn contain tuples of the source language, the target language and the possible alignment
		settings =  The hardcoded options set within the "langsettings.json" file
	Outputs:
		ibm2 = An object containing the mapping for the foreign words and the translated words and the probabilities of each
		corpus = The modified input, which has the alignments for each word.
	'''
	# train the model
	ibm2=IBMModel2(corpus,settings['iterations'])

	return ibm2,corpus
    def test_set_uniform_alignment_probabilities_of_non_domain_values(self):
        # arrange
        corpus = [
            AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]),
            AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]),
        ]
        model2 = IBMModel2(corpus, 0)

        # act
        model2.set_uniform_probabilities(corpus)

        # assert
        # examine i and j values that are not in the training data domain
        self.assertEqual(model2.alignment_table[99][1][3][2], IBMModel.MIN_PROB)
        self.assertEqual(model2.alignment_table[2][99][2][4], IBMModel.MIN_PROB)
    def test_set_uniform_alignment_probabilities(self):
        # arrange
        corpus = [
            AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']),
            AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']),
        ]
        model2 = IBMModel2(corpus, 0)

        # act
        model2.set_uniform_probabilities(corpus)

        # assert
        # expected_prob = 1.0 / (length of source sentence + 1)
        self.assertEqual(model2.alignment_table[0][1][3][2], 1.0 / 4)
        self.assertEqual(model2.alignment_table[2][4][2][4], 1.0 / 3)
Exemple #7
0
def task_2(path, alignments_pred):
    """
    Task 2: Comparing our alignment results with that of NLTK library's output of IBM Model 1 and IBM Model 2
    :param path: path for data
    :param alignments_pred: alignments computed in task 1
    :return: parallel_corpus, phrase_extraction_corpus_en, phrase_extraction_corpus_fr
    """
    parallel_corpus = []
    phrase_extraction_corpus_en = []
    phrase_extraction_corpus_fr = []
    with open(path, 'r') as f:
        d = json.load(f)

    for sent in d:
        phrase_extraction_corpus_en.append(sent['en'])
        phrase_extraction_corpus_fr.append(sent['fr'])
        fr_words = sent['fr'].split()
        en_words = sent['en'].split()
        parallel_corpus.append(AlignedSent(en_words, fr_words))

    # MODEL - 2

    print("******IBM Model-2*******")

    ibm2 = IBMModel2(parallel_corpus, 50)
    for test in parallel_corpus:
        print("en_sentence: {}".format(test.words))
        print("fr_sentence: {}".format(test.mots))
        try:
            print("nltk alignment: {}".format(test.alignment))
        except:
            print("nltk ibm model 2 alignment failed")

    #  MODEL-1

    ibm1 = IBMModel1(parallel_corpus, 50)
    print("******IBM Model 1*******")
    for test in parallel_corpus:
        print("en_sentence: {}".format(test.words))
        print("fr_sentence: {}".format(test.mots))
        try:
            print("nltk alignment: {}".format(test.alignment))
        except:
            print("nltk ibm model 1 alignment failed")
        str_test = ' '.join(word for word in test.words)
        print("predicted alignment: {}\n".format(alignemnts_pred[str_test]))

    return parallel_corpus, phrase_extraction_corpus_en, phrase_extraction_corpus_fr
Exemple #8
0
    def __init__(self,
                 sentence_aligned_corpus,
                 iterations,
                 probability_tables=None):
        """
        Train on ``sentence_aligned_corpus`` and create a lexical
        translation model, a distortion model, a fertility model, and a
        model for generating NULL-aligned words.

        Translation direction is from ``AlignedSent.mots`` to
        ``AlignedSent.words``.

        :param sentence_aligned_corpus: Sentence-aligned parallel corpus
        :type sentence_aligned_corpus: list(AlignedSent)

        :param iterations: Number of iterations to run training algorithm
        :type iterations: int

        :param probability_tables: Optional. Use this to pass in custom
            probability values. If not specified, probabilities will be
            set to a uniform distribution, or some other sensible value.
            If specified, all the following entries must be present:
            ``translation_table``, ``alignment_table``,
            ``fertility_table``, ``p1``, ``distortion_table``.
            See ``IBMModel`` for the type and purpose of these tables.
        :type probability_tables: dict[str]: object
        """
        super(IBMModel3, self).__init__(sentence_aligned_corpus)
        self.reset_probabilities()

        if probability_tables is None:
            # Get translation and alignment probabilities from IBM Model 2
            ibm2 = IBMModel2(sentence_aligned_corpus, iterations)
            self.translation_table = ibm2.translation_table
            self.alignment_table = ibm2.alignment_table
            self.set_uniform_probabilities(sentence_aligned_corpus)
        else:
            # Set user-defined probabilities
            self.translation_table = probability_tables["translation_table"]
            self.alignment_table = probability_tables["alignment_table"]
            self.fertility_table = probability_tables["fertility_table"]
            self.p1 = probability_tables["p1"]
            self.distortion_table = probability_tables["distortion_table"]

        for n in range(0, iterations):
            self.train(sentence_aligned_corpus)
Exemple #9
0
def compare_ibm_2_nltk(t, max_steps, a, src, tar):
	print('Compare my IBM Model 2 to nltk library:')
	aligned = test_sets_to_aligned(src, tar)
	ibm2 = IBMModel2(aligned, max_steps)
	compare_t_table(ibm2, t)
	correct = True
	correct_a = 0
	for (i,j,l_e,l_f) in a:
		bool_ = (a[(i,j,l_e,l_f)] > 0.7) == (ibm2.alignment_table[j][i][l_f][l_e] > 0.7)
		if bool_ == False:
			if DEBUG: print('wrong a:', a[(i,j,l_e,l_f)], '!=',ibm2.alignment_table[j][i][l_f][l_e],'for i',i,' j',j,' l_e',l_e,' l_f',l_f)
			correct = False
		else:
			correct_a += 1
			#print(' a:', a[(i,j,l_e,l_f)], 'for i',i,' j',j,' l_e',l_e,' l_f',l_f)
	if correct: print('All a values were correct.\n')
	else: print('a values ', 100 * (correct_a / len(a)), '% correct,',correct_a,'values wrong.\n')
    def test_prob_t_a_given_s(self):
        # arrange
        src_sentence = ["ich", 'esse', 'ja', 'gern', 'räucherschinken']
        trg_sentence = ['i', 'love', 'to', 'eat', 'smoked', 'ham']
        corpus = [AlignedSent(trg_sentence, src_sentence)]
        alignment_info = AlignmentInfo(
            (0, 1, 4, 0, 2, 5, 5),
            [None] + src_sentence,
            ['UNUSED'] + trg_sentence,
            None,
        )

        translation_table = defaultdict(lambda: defaultdict(float))
        translation_table['i']['ich'] = 0.98
        translation_table['love']['gern'] = 0.98
        translation_table['to'][None] = 0.98
        translation_table['eat']['esse'] = 0.98
        translation_table['smoked']['räucherschinken'] = 0.98
        translation_table['ham']['räucherschinken'] = 0.98

        alignment_table = defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float)))
        )
        alignment_table[0][3][5][6] = 0.97  # None -> to
        alignment_table[1][1][5][6] = 0.97  # ich -> i
        alignment_table[2][4][5][6] = 0.97  # esse -> eat
        alignment_table[4][2][5][6] = 0.97  # gern -> love
        alignment_table[5][5][5][6] = 0.96  # räucherschinken -> smoked
        alignment_table[5][6][5][6] = 0.96  # räucherschinken -> ham

        model2 = IBMModel2(corpus, 0)
        model2.translation_table = translation_table
        model2.alignment_table = alignment_table

        # act
        probability = model2.prob_t_a_given_s(alignment_info)

        # assert
        lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98
        alignment = 0.97 * 0.97 * 0.97 * 0.97 * 0.96 * 0.96
        expected_probability = lexical_translation * alignment
        self.assertEqual(round(probability, 4), round(expected_probability, 4))
    def test_prob_t_a_given_s(self):
        # arrange
        src_sentence = ["ich", "esse", "ja", "gern", "räucherschinken"]
        trg_sentence = ["i", "love", "to", "eat", "smoked", "ham"]
        corpus = [AlignedSent(trg_sentence, src_sentence)]
        alignment_info = AlignmentInfo(
            (0, 1, 4, 0, 2, 5, 5),
            [None] + src_sentence,
            ["UNUSED"] + trg_sentence,
            None,
        )

        translation_table = defaultdict(lambda: defaultdict(float))
        translation_table["i"]["ich"] = 0.98
        translation_table["love"]["gern"] = 0.98
        translation_table["to"][None] = 0.98
        translation_table["eat"]["esse"] = 0.98
        translation_table["smoked"]["räucherschinken"] = 0.98
        translation_table["ham"]["räucherschinken"] = 0.98

        alignment_table = defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float)))
        )
        alignment_table[0][3][5][6] = 0.97  # None -> to
        alignment_table[1][1][5][6] = 0.97  # ich -> i
        alignment_table[2][4][5][6] = 0.97  # esse -> eat
        alignment_table[4][2][5][6] = 0.97  # gern -> love
        alignment_table[5][5][5][6] = 0.96  # räucherschinken -> smoked
        alignment_table[5][6][5][6] = 0.96  # räucherschinken -> ham

        model2 = IBMModel2(corpus, 0)
        model2.translation_table = translation_table
        model2.alignment_table = alignment_table

        # act
        probability = model2.prob_t_a_given_s(alignment_info)

        # assert
        lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98
        alignment = 0.97 * 0.97 * 0.97 * 0.97 * 0.96 * 0.96
        expected_probability = lexical_translation * alignment
        self.assertEqual(round(probability, 4), round(expected_probability, 4))
Exemple #12
0
def IBM_Model_2(corpus):
    bitext = []
    for x in corpus:
        bitext.append(
            AlignedSent(x[SOURCE_LANGUAGE].split(),
                        x[DESTINATION_LANGUAGE].split()))
    print("IBM MODEL 2 :")
    print("")
    ibm2 = IBMModel2(bitext, NUMBER_OF_ITERATIONS)
    #pretty(ibm2.translation_table)
    for test in bitext:
        print("Source sentence:")
        print(test.words)
        print("Destination sentence:")
        print(test.mots)
        print("Alignment:")
        print(test.alignment)
        print("")
    print("----------------------------------------")
    return ibm2.translation_table, bitext
Exemple #13
0
    def __init__(self,
                 sentence_aligned_corpus,
                 iterations,
                 probability_tables=None):
        super(IBMModel3, self).__init__(sentence_aligned_corpus)
        self.reset_probabilities()

        if probability_tables is None:
            ibm2 = IBMModel2(sentence_aligned_corpus, iterations)
            self.translation_table = ibm2.translation_table
            self.alignment_table = ibm2.alignment_table
            self.set_uniform_probabilities(sentence_aligned_corpus)
        else:
            self.translation_table = probability_tables['translation_table']
            self.alignment_table = probability_tables['alignment_table']
            self.fertility_table = probability_tables['fertility_table']
            self.p1 = probability_tables['p1']
            self.distortion_table = probability_tables['distortion_table']

        for n in range(0, iterations):
            self.train(sentence_aligned_corpus)
list_fore = []
for i in range(len(x)):
       list_eng.append(x[i].split())
       list_fore.append(y[i].split())
data = []
bitext = []
for i in range(len(list_eng)):
      l = []
      l.append(list_eng[i])
      l.append(list_fore[i])
      data.append(l)
      bitext.append(AlignedSent(list_eng[i],list_fore[i]))


ibm1 = IBMModel1(bitext, 5)
ibm2 = IBMModel2(bitext, 5)
corpus = []
for i in data:
     for j in i:
         for k in j:
          if not k in corpus:
            corpus.append(k)
print(bitext)

print("first word  "  +  "second word  " + "        ibmmodel1  " + "        ibmmodel2 ")
for i in corpus :
    for j in corpus :
      if((i!=j) and (ibm1.translation_table[i][j] > 0.000005 or ibm2.translation_table[i][j] >  0.000005 ) ):

         print(i + "         " +   j + "       " + str( ibm1.translation_table[i][j]) + "            "+ str(ibm2.translation_table[i][j]))
#for i in data :
Exemple #15
0
#     with open('ibm_part1.pkl', 'rb') as file:
#         ibm_part1 = pickle.load(file)
#     print('Loading ibm model 2')
#     with open('ibm_part2.pkl', 'rb') as file:
#         ibm_part2 = pickle.load(file)
#     print('Loading ibm model 3')
#     with open('ibm_part3.pkl', 'rb') as file:
#         ibm_part3 = pickle.load(file)
#     # with open('ibm_part4.pkl', 'rb') as file:
#     #     ibm_part4 = pickle.load(file)
#     # with open('ibm_part5.pkl', 'rb') as file:
#     #     ibm_part5 = pickle.load(file)
# else:
    #bitext = bitext_part1+bitext_part2+bitext_part3#+bitext_part4+bitext_part5
print('Creating ibm part 1')
ibm_part1 = IBMModel2(bitext_part1, 5)
    # with open('ibm_part1.pkl', 'wb') as file:
    #     pickle.dump(ibm_part1, file)
    #
    # print('Creating ibm part 2')
    # ibm_part2 = IBMModel2(bitext_part2, 5)
    # with open('ibm_part2.pkl', 'wb') as file:
    #     pickle.dump(ibm_part2, file)
    #
    # print('Creating ibm part 3')
    # ibm_part3 = IBMModel2(bitext_part3, 5)
    # with open('ibm_part3.pkl', 'wb') as file:
    #     pickle.dump(ibm_part3, file)
    #
    # print('Creating ibm part 4')
    # ibm_part4 = IBMModel2(bitext_part4, 5)
Exemple #16
0
while i < len(lines):
    if i % 2 == 0:
        # Will use the ibm model to calculate p(f|e)
        # With the noisy model, the translation direction is reversed!
        bitext.append(
            AlignedSent([t.lower() for t in nltk.word_tokenize(lines[i + 1])],
                        [t.lower() for t in nltk.word_tokenize(lines[i])]))
        fr_text += nltk.word_tokenize(lines[i])
        en_text += nltk.word_tokenize(lines[i + 1])
    i += 1
train_file.close()

fr_text = nltk.Text(fr_text)
en_text = nltk.Text(en_text)
en_vocab = [v for v in en_text.vocab()]
ibm2 = IBMModel2(bitext, len(bitext) * 5)

cfd_len_l_m = {}
len_l_m_list = []
for t in bitext:
    l = len(t.mots)
    m = len(t.words)
    len_l_m_list += [(l, m)]
cfd_len_l_m = nltk.ConditionalFreqDist(len_l_m_list)

# cfd_dict = {}
# # Get the cfd for the alignment
# for t in bitext:
#   l = len(t.mots)
#   m = len(t.words)
#   cfd_dict[(l,m)] = nltk.ConditionalFreqDist(t.alignment)
Exemple #17
0
    wc = FreqDist()

    # Structures: 1-paragraph alignment only, 2-sentence alignment based on paragraphs, 3-direct sentence alignment
    structures = {1: "para", 2: "psent", 3: "sent"}
    struct_num = 1

    for i in range(1, 44):
        en_path = 'translation-dashboard/data/en-ba-' + structures[struct_num] + '-align/en-chapter-' + str(i) + '.txt'
        ba_path = 'translation-dashboard/data/en-ba-' + structures[struct_num] + '-align/ba-chapter-' + str(i) + '.txt'
        aligned_paras.extend(para_as_sent(en_path, ba_path))
        wc += word_count(en_path)
    # print (wc.freq("i"))

    num_iterations = 20
    start = timer()
    model = IBMModel2(aligned_paras, num_iterations)
    end = timer()
    timeelapsed = end - start  # timer will only evaluate time taken to run IBM Models

    with open('align_models/ibm-model-runtimes.csv', 'a', encoding='utf-8') as output_file:
        output_writer = csv.writer(output_file, delimiter='\t')
        output_writer.writerow(
            ["2", str(num_iterations), timeelapsed, socket.gethostname(), 'struct' + str(struct_num)])
    output_file.close()

    # Save model and word count
    with open('align_models/ibm2.model', 'wb') as m_file:
        dill.dump(model, m_file)
    with open('align_models/en.wc', 'wb') as wc_file:
        pickle.dump(wc, wc_file)
    write_common_words_translations(model, wc, 50, 'align_models/word-align.csv')
def generateModels(qtype):
	# dictionary, pwC, pdf = prepare_corpus("data/linkSO",recompute=False)
	datadir = "data/linkSO"
	all_questions = pd.read_csv(join(datadir, "linkso/topublish/" + qtype + "/" + qtype + "_qid2all.txt"), sep='\t', \
								names=['qID', 'qHeader', 'qDescription', 'topVotedAnswer', 'type'])
	similar_docs_file = pd.read_csv(join(datadir, "linkso/topublish/" + qtype + "/" + qtype + "_cosidf.txt"), sep='\t', \
									names=['qID1', 'qID2', 'score', 'label'], skiprows=1)
	filtered_rows = similar_docs_file[similar_docs_file[label] == 1]
	filtered_columns = filtered_rows.filter(items=[question_id1, question_id2])
	bitext_qH_qH = []
	bitext_qD_qD = []
	bitext_qHqD_qHqD = []
	loop_counter = 0
	for each_row in filtered_columns.itertuples():
		q1ID = each_row[1]
		q2ID = each_row[2]
		q1_row = all_questions.loc[all_questions[question_id] == q1ID]
		q1header = str(q1_row[question_header].values[0]).split()
		q1desc = str(q1_row[question_description].values[0]).split()
		q1ans = str(q1_row[top_answer].values[0]).split()
		q2_row = all_questions.loc[all_questions[question_id] == q2ID]
		q2header = str(q2_row[question_header].values[0]).split()
		q2desc = str(q2_row[question_description].values[0]).split()
		q2ans = str(q2_row[top_answer].values[0]).split()
		# print("\nQ1 Header:", q1header)
		# print("Q1 Desc:", q1desc)
		# print("Q1 Answer:", q1ans)
		# print("Q2:", q2header)
		# print("Q2 Desc:", q2desc)
		# print("Q2 Answer:", q2ans)
		bitext_qH_qH.append(AlignedSent(q1header, q2header))
		bitext_qD_qD.append(AlignedSent(q1desc, q2desc))
		bitext_qHqD_qHqD.append(AlignedSent(q1header + q1desc, q2header + q2desc))
		loop_counter += 1

	# Model 1
	print("Training Model1 QH QH..")
	start = time.time()
	ibmQH = IBMModel1(bitext_qH_qH, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQH_Model1_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQH, fout)

	print("Training Model1 QD QD..")
	start = time.time()
	ibmQD = IBMModel1(bitext_qD_qD, 50)
	print("Model QD QD trained.. In", time.time() - start, " seconds..")
	with open('modelQDQD_Model1_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQD, fout)

	print("Training Model1 QHQD QHQD..")
	start = time.time()
	ibmQHQD = IBMModel1(bitext_qHqD_qHqD, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQD_Model1_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQHQD, fout)

	print(round(ibmQH.translation_table['html']['web'], 10))
	print(round(ibmQD.translation_table['html']['web'], 10))
	print(round(ibmQHQD.translation_table['html']['web'], 10))

	# Model 2
	print("Training Model2 QH QH..")
	start = time.time()
	ibmQH = IBMModel2(bitext_qH_qH, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQH_Model2_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQH, fout)

	print("Training Model2 QD QD..")
	start = time.time()
	ibmQD = IBMModel2(bitext_qD_qD, 50)
	print("Model QD QD trained.. In", time.time() - start, " seconds..")
	with open('modelQDQD_Model2_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQD, fout)

	print("Training Model2 QHQD QHQD..")
	start = time.time()
	ibmQHQD = IBMModel2(bitext_qHqD_qHqD, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQD_Model2_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQHQD, fout)

	print(round(ibmQH.translation_table['html']['web'], 10))
	print(round(ibmQD.translation_table['html']['web'], 10))
	print(round(ibmQHQD.translation_table['html']['web'], 10))

	# Model 3
	print("Training Model3 QH QH..")
	start = time.time()
	ibmQH = IBMModel3(bitext_qH_qH, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQH_Model3_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQH, fout)

	print("Training Model3 QD QD..")
	start = time.time()
	ibmQD = IBMModel3(bitext_qD_qD, 50)
	print("Model QD QD trained.. In", time.time() - start, " seconds..")
	with open('modelQDQD_Model3_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQD, fout)

	print("Training Model3 QHQD QHQD..")
	start = time.time()
	ibmQHQD = IBMModel3(bitext_qHqD_qHqD, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQD_Model3_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQHQD, fout)

	print(round(ibmQH.translation_table['html']['web'], 10))
	print(round(ibmQD.translation_table['html']['web'], 10))
	print(round(ibmQHQD.translation_table['html']['web'], 10))

	# Model 4
	print("Training Model4 QH QH..")
	start = time.time()
	ibmQH = IBMModel4(bitext_qH_qH, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQH_Model4_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQH, fout)

	print("Training Model4 QD QD..")
	start = time.time()
	ibmQD = IBMModel4(bitext_qD_qD, 50)
	print("Model QD QD trained.. In", time.time() - start, " seconds..")
	with open('modelQDQD_Model4_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQD, fout)

	print("Training Model4 QHQD QHQD..")
	start = time.time()
	ibmQHQD = IBMModel4(bitext_qHqD_qHqD, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQD_Model4_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQHQD, fout)

	print(round(ibmQH.translation_table['html']['web'], 10))
	print(round(ibmQD.translation_table['html']['web'], 10))
	print(round(ibmQHQD.translation_table['html']['web'], 10))

	# Model5
	print("Training Model5 QH QH..")
	start = time.time()
	ibmQH = IBMModel5(bitext_qH_qH, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQH_Model5_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQH, fout)

	print("Training Model5 QD QD..")
	start = time.time()
	ibmQD = IBMModel5(bitext_qD_qD, 50)
	print("Model QD QD trained.. In", time.time() - start, " seconds..")
	with open('modelQDQD_Model5_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQD, fout)

	print("Training Model5 QHQD QHQD..")
	start = time.time()
	ibmQHQD = IBMModel5(bitext_qHqD_qHqD, 50)
	print("Model QH QH trained.. In", time.time() - start, " seconds..")
	with open('modelQHQD_Model5_' + qtype + '.pk', 'wb') as fout:
		pickle.dump(ibmQHQD, fout)

	print(round(ibmQH.translation_table['html']['web'], 10))
	print(round(ibmQD.translation_table['html']['web'], 10))
	print(round(ibmQHQD.translation_table['html']['web'], 10))
Exemple #19
0
    #print(test_sentence)
    print(align_ibm)
    #print(" ")
print(" ")

# In[268]:

#TRAINING IBM MODEL 2
#bitext_2 will have the parallel corpus

bitext_2 = []
for i in range(len(fr)):
    bitext_2.append(AlignedSent(en[i], fr[i]))

#Training for 100 iterations
ibm2 = IBMModel2(bitext_2, 1000)
#trans_dict_2 will contain the translation probabilities for each distinct pair of words
#pair being of the form (english_word,french_word)
trans_dict_2 = ibm2.translation_table

# In[269]:

#ALIGNMENTS OF IBM MODEL 2
print("IBM MODEL 2")
for i in range(len(fr)):
    test_sentence = bitext_2[i]
    align_ibm2 = test_sentence.alignment
    #print(test_sentence)
    print(align_ibm2)
    #print(" ")
print(" ")