Exemple #1
0
def collapse_mask(mask, auto_label=True, custom_mask=None):
    """collapse separate masks into one mask with multiple integers
        overlapping areas are ignored

    Args:
        mask: nibabel or Brain_Data instance
        custom_mask: nibabel instance or string to file path; optional

    Returns:
        out: Brain_Data instance of a mask with different integers indicating
            different masks

    """

    from nltools.data import Brain_Data

    if not isinstance(mask, Brain_Data):
        if isinstance(mask, nib.Nifti1Image):
            mask = Brain_Data(mask, mask=custom_mask)
        else:
            raise ValueError("Make sure mask is a nibabel or Brain_Data "
                             "instance.")

    if len(mask.shape()) > 1:
        if len(mask) > 1:
            out = mask.empty()

            # Create list of masks and find any overlaps
            m_list = []
            for x in range(len(mask)):
                m_list.append(mask[x].to_nifti())
            intersect = intersect_masks(m_list, threshold=1, connected=False)
            intersect = Brain_Data(
                nib.Nifti1Image(np.abs(intersect.get_data() - 1),
                                intersect.get_affine()),
                mask=custom_mask,
            )

            merge = []
            if auto_label:
                # Combine all masks into sequential order
                # ignoring any areas of overlap
                for i in range(len(m_list)):
                    merge.append(
                        np.multiply(
                            Brain_Data(m_list[i], mask=custom_mask).data,
                            intersect.data) * (i + 1))
                out.data = np.sum(np.array(merge).T, 1).astype(int)
            else:
                # Collapse masks using value as label
                for i in range(len(m_list)):
                    merge.append(
                        np.multiply(
                            Brain_Data(m_list[i], mask=custom_mask).data,
                            intersect.data))
                out.data = np.sum(np.array(merge).T, 1)
            return out
    else:
        warnings.warn("Doesn't need to be collapased")
    def get_trialtype_pain_regressors(self,nifti_data,onset_file):
        print("importing nifti")
        #import the nifti
        if (os.path.isfile(nifti_data + "nltoolstandard.nii.gz")):
            msmrl1 = Brain_Data(
                nifti_data + "nltoolstandard.nii.gz")
        else:
            msmrl1 = Brain_Data(
                nifti_data + ".nii.gz")
            msmrl1.write(nifti_data + "nltoolstandard.nii.gz")
        #preprocess the nifti?
        print("importing onsets")
        #import the onset
        onsets = onsets_to_dm(
            onset_file,
            TR=2,
            runLength=msmrl1.shape()[0]
        )

        #process the onset files
        #
        onsets.sampling_rate=2

        onsets_convolved=onsets.convolve()

        for c in onsets_convolved.columns:
            if sum(onsets_convolved.ix[:, c]) <= 0:
                print('deleting '+ str(c))
                del onsets_convolved[c]

        onsets_convolved['linearterm']=range(1,361)
        onsets_convolved['quadraticterm']=[pow(x,2) for x in onsets_convolved['linearterm']]
        onsets_convolved['cubicterm']=[pow(x,3) for x in onsets_convolved['linearterm']]
        onsets_convolved['ones']=[1]*360
        msmrl1.X=onsets_convolved
        print("convolved onsets; regressing...")
        #regress
        regression=msmrl1.regress()
        print("Regressing; calculating similarity...")
        msm_predicted_pain = regression['beta'].similarity(self.stats['weight_map'], 'dot_product')
        onset_colnames = onsets_convolved.columns.tolist()
        msm_predicted_pain_dict={}
        for i, b in enumerate(msm_predicted_pain):
            msm_predicted_pain_dict[onset_colnames[i]] = b
        return msm_predicted_pain_dict
Exemple #3
0
def test_data(tmpdir):
    sim = Simulator()
    r = 10
    sigma = 1
    y = [0, 1]
    n_reps = 3
    output_dir = str(tmpdir)
    sim.create_data(y, sigma, reps=n_reps, output_dir=output_dir)

    shape_3d = (91, 109, 91)
    shape_2d = (6, 238955)
    y=pd.read_csv(os.path.join(str(tmpdir.join('y.csv'))),header=None,index_col=None).T
    flist = glob.glob(str(tmpdir.join('centered*.nii.gz')))
    dat = Brain_Data(data=flist,Y=y)

    # Test shape
    assert dat.shape() == shape_2d

    # Test Mean
    assert dat.mean().shape()[0] == shape_2d[1]

    # Test Std
    assert dat.std().shape()[0] == shape_2d[1]

    # Test to_nifti
    d = dat.to_nifti
    assert d().shape[0:3] == shape_3d

    # # Test T-test
    out = dat.ttest()
    assert out['t'].shape()[0]==shape_2d[1]

    # Test Regress
    dat.X = pd.DataFrame({'Intercept':np.ones(len(dat.Y)),'X1':np.array(dat.Y).flatten()},index=None)
    out = dat.regress()
    assert out['beta'].shape() == (2,shape_2d[1])

    # Test indexing
    assert out['t'][1].shape()[0] == shape_2d[1]

    # Test threshold
    i=1
    tt = threshold(out['t'][i], out['p'][i], threshold_dict={'fdr':.05})
    assert tt.shape()[0] == shape_2d[1]
def simulate_data(n_observations, y, p, sigma, mask):
    ''' Simulate Brain Data

        Args:
            n_observations: (int) number of data points
            y: (array) one dimensional array of signal
            p: (float) probability of signal in voxels
            sigma: (float) amount of gaussian noise to add

        Returns:
            data: (list) of Brain_Data objects
    '''

    dat = Brain_Data(mask).apply_mask(mask)
    new_data = np.zeros((dat.shape()[0], n_observations))
    for i in np.where(dat.data == 1)[0]:
        if np.random.randint(0, high=10) < p:
            new_data[i, :] = y
    noise = np.random.randn(new_data.shape[0], n_observations) * sigma
    dat.data = (new_data + noise).T
    return dat
Exemple #5
0
def test_data(tmpdir):
    sim = Simulator()
    r = 10
    sigma = 1
    y = [0, 1]
    n_reps = 3
    output_dir = str(tmpdir)
    sim.create_data(y, sigma, reps=n_reps, output_dir=output_dir)

    shape_3d = (91, 109, 91)
    shape_2d = (6, 238955)
    y = pd.read_csv(os.path.join(str(tmpdir.join('y.csv'))),
                    header=None,
                    index_col=None).T
    flist = glob.glob(str(tmpdir.join('centered*.nii.gz')))

    # Test load list
    dat = Brain_Data(data=flist, Y=y)

    # Test load file
    assert Brain_Data(flist[0])

    # Test to_nifti
    d = dat.to_nifti()
    assert d.shape[0:3] == shape_3d

    # Test load nibabel
    assert Brain_Data(d)

    # Test shape
    assert dat.shape() == shape_2d

    # Test Mean
    assert dat.mean().shape()[0] == shape_2d[1]

    # Test Std
    assert dat.std().shape()[0] == shape_2d[1]

    # Test add
    new = dat + dat
    assert new.shape() == shape_2d

    # Test subtract
    new = dat - dat
    assert new.shape() == shape_2d

    # Test multiply
    new = dat * dat
    assert new.shape() == shape_2d

    # Test Iterator
    x = [x for x in dat]
    assert len(x) == len(dat)
    assert len(x[0].data.shape) == 1

    # # Test T-test
    out = dat.ttest()
    assert out['t'].shape()[0] == shape_2d[1]

    # # # Test T-test - permutation method
    # out = dat.ttest(threshold_dict={'permutation':'tfce','n_permutations':50,'n_jobs':1})
    # assert out['t'].shape()[0]==shape_2d[1]

    # Test Regress
    dat.X = pd.DataFrame(
        {
            'Intercept': np.ones(len(dat.Y)),
            'X1': np.array(dat.Y).flatten()
        },
        index=None)
    out = dat.regress()
    assert out['beta'].shape() == (2, shape_2d[1])

    # Test indexing
    assert out['t'][1].shape()[0] == shape_2d[1]

    # Test threshold
    i = 1
    tt = threshold(out['t'][i], out['p'][i], .05)
    assert isinstance(tt, Brain_Data)

    # Test write
    dat.write(os.path.join(str(tmpdir.join('test_write.nii'))))
    assert Brain_Data(os.path.join(str(tmpdir.join('test_write.nii'))))

    # Test append
    assert dat.append(dat).shape()[0] == shape_2d[0] * 2

    # Test distance
    distance = dat.distance(method='euclidean')
    assert distance.shape == (shape_2d[0], shape_2d[0])

    # Test predict
    stats = dat.predict(algorithm='svm',
                        cv_dict={
                            'type': 'kfolds',
                            'n_folds': 2,
                            'n': len(dat.Y)
                        },
                        plot=False,
                        **{'kernel': "linear"})

    # Support Vector Regression, with 5 fold cross-validation with Platt Scaling
    # This will output probabilities of each class
    stats = dat.predict(algorithm='svm',
                        cv_dict=None,
                        plot=False,
                        **{
                            'kernel': 'linear',
                            'probability': True
                        })

    assert isinstance(stats['weight_map'], Brain_Data)
    # Logistic classificiation, with 5 fold stratified cross-validation.

    stats = dat.predict(algorithm='logistic',
                        cv_dict={
                            'type': 'kfolds',
                            'n_folds': 5,
                            'n': len(dat.Y)
                        },
                        plot=False)
    assert isinstance(stats['weight_map'], Brain_Data)

    # Ridge classificiation, with 5 fold between-subject cross-validation, where data for each subject is held out together.
    stats = dat.predict(algorithm='ridgeClassifier', cv_dict=None, plot=False)
    assert isinstance(stats['weight_map'], Brain_Data)

    # Test Similarity
    r = dat.similarity(stats['weight_map'])
    assert len(r) == shape_2d[0]
    r2 = dat.similarity(stats['weight_map'].to_nifti())
    assert len(r2) == shape_2d[0]

    # Test apply_mask - might move part of this to test mask suite
    s1 = create_sphere([41, 64, 55], radius=10)
    assert isinstance(s1, nb.Nifti1Image)
    s2 = Brain_Data(s1)
    masked_dat = dat.apply_mask(s1)
    assert masked_dat.shape()[1] == np.sum(s2.data != 0)

    # Test extract_roi
    mask = create_sphere([41, 64, 55], radius=10)
    assert len(dat.extract_roi(mask)) == shape_2d[0]

    # Test r_to_z
    z = dat.r_to_z()
    assert z.shape() == dat.shape()

    # Test copy
    d_copy = dat.copy()
    assert d_copy.shape() == dat.shape()

    # Test detrend
    detrend = dat.detrend()
    assert detrend.shape() == dat.shape()
    def get_trialtype_pain_regressors(self, nifti_data, onset_file):
        print("importing nifti")
        #import the nifti
        #load the nltools prepped file if it's available.
        if (os.path.isfile(nifti_data + "nltoolstandard.nii.gz")):
            msmrl1 = Brain_Data(nifti_data + "nltoolstandard.nii.gz")
        else:  #but if it's not; no worries; just load the original one.
            msmrl1 = Brain_Data(nifti_data + ".nii.gz")
            msmrl1.write(nifti_data + "nltoolstandard.nii.gz")

        #I want to standardize globally; this will preserve the relative strengths of each time point
        #and preserve the relative activity at each voxel.
        #and let's use the mean standard deviation across all the images.
        #msmrl1.data = msmrl1.data - np.tile(msmrl1.mean().mean(),msmrl1.data.shape)
        #msmrl1.data = msmrl1.data / np.tile(np.std(msmrl1.data,axis=1).mean(),msmrl1.data.shape)
        # OR we could apply the standardization to the OUTPUT.
        #grand_mean=msmrl1.mean().mean()
        #grand_sd=np.std(msmrl1.data,axis=1).mean()

        #preprocess the nifti?
        print("importing onsets")
        #import the onset
        onsets = onsets_to_dm(onset_file, TR=2, runLength=msmrl1.shape()[0])

        #process the onset files
        #
        onsets.sampling_rate = 2

        onsets_convolved = onsets.convolve()

        #delete columns with no information in them.
        for c in onsets_convolved.columns:
            if sum(onsets_convolved.ix[:, c]) <= 0:
                print('deleting ' + str(c))
                del onsets_convolved[c]

        rowcount = onsets_convolved.__len__()
        if rowcount != 360:
            warnings.warn(
                "Just a friendly FYI: expected number of rows is 360 but this subject had "
                + str(rowcount) +
                ". Probably this subject got cut off the task half-way through."
            )
        onsets_convolved['linearterm'] = range(1, rowcount + 1)

        onsets_convolved['quadraticterm'] = [
            pow(x, 2) for x in onsets_convolved['linearterm']
        ]
        onsets_convolved['cubicterm'] = [
            pow(x, 3) for x in onsets_convolved['linearterm']
        ]
        onsets_convolved['ones'] = [1] * rowcount
        msmrl1.X = onsets_convolved
        print("convolved onsets; regressing...")
        #regress the file on each of the onsets. So then, when we compare similarity to the regression, we'll be getting the
        #regression to the each event, not to each TR.
        regression = msmrl1.regress()
        print("Regressing; calculating similarity to the pain map from " +
              self.decoder_origin + "...")
        msm_predicted_pain = regression['beta'].similarity(
            self.decoder, 'dot_product')
        msm_predicted_pain_scaled = msm_predicted_pain - msmrl1.data.std()
        onset_colnames = onsets_convolved.columns.tolist()
        msm_predicted_pain_dict = {}
        for i, b in enumerate(msm_predicted_pain_scaled):
            msm_predicted_pain_dict[onset_colnames[i]] = b
        return msm_predicted_pain_dict
Exemple #7
0
def test_brain_data(tmpdir):

    # Add 3mm to list to test that resolution as well
    for resolution in ['2mm']:

        MNI_Template["resolution"] = resolution

        sim = Simulator()
        r = 10
        sigma = 1
        y = [0, 1]
        n_reps = 3
        output_dir = str(tmpdir)
        dat = sim.create_data(y, sigma, reps=n_reps, output_dir=output_dir)

        if MNI_Template["resolution"] == '2mm':
            shape_3d = (91, 109, 91)
            shape_2d = (6, 238955)
        elif MNI_Template["resolution"] == '3mm':
            shape_3d = (60, 72, 60)
            shape_2d = (6, 71020)

        y = pd.read_csv(os.path.join(str(tmpdir.join('y.csv'))),header=None, index_col=None)
        holdout = pd.read_csv(os.path.join(str(tmpdir.join('rep_id.csv'))),header=None,index_col=None)

        # Test load list of 4D images
        file_list = [str(tmpdir.join('data.nii.gz')), str(tmpdir.join('data.nii.gz'))]
        dat = Brain_Data(file_list)
        dat = Brain_Data([nb.load(x) for x in file_list])

        # Test load list
        dat = Brain_Data(data=str(tmpdir.join('data.nii.gz')), Y=y)

        # Test concatenate
        out = Brain_Data([x for x in dat])
        assert isinstance(out, Brain_Data)
        assert len(out)==len(dat)

        # Test to_nifti
        d = dat.to_nifti()
        assert d.shape[0:3] == shape_3d

        # Test load nibabel
        assert Brain_Data(d)

        # Test shape
        assert dat.shape() == shape_2d

        # Test Mean
        assert dat.mean().shape()[0] == shape_2d[1]

        # Test Std
        assert dat.std().shape()[0] == shape_2d[1]

        # Test add
        new = dat + dat
        assert new.shape() == shape_2d

        # Test subtract
        new = dat - dat
        assert new.shape() == shape_2d

        # Test multiply
        new = dat * dat
        assert new.shape() == shape_2d

        # Test Indexing
        index = [0, 3, 1]
        assert len(dat[index]) == len(index)
        index = range(4)
        assert len(dat[index]) == len(index)
        index = dat.Y == 1

        assert len(dat[index.values.flatten()]) == index.values.sum()

        assert len(dat[index]) == index.values.sum()
        assert len(dat[:3]) == 3

        # Test Iterator
        x = [x for x in dat]
        assert len(x) == len(dat)
        assert len(x[0].data.shape) == 1

        # # Test T-test
        out = dat.ttest()
        assert out['t'].shape()[0] == shape_2d[1]

        # # # Test T-test - permutation method
        # out = dat.ttest(threshold_dict={'permutation':'tfce','n_permutations':50,'n_jobs':1})
        # assert out['t'].shape()[0]==shape_2d[1]

        # Test Regress
        dat.X = pd.DataFrame({'Intercept':np.ones(len(dat.Y)),
                            'X1':np.array(dat.Y).flatten()}, index=None)

        # Standard OLS
        out = dat.regress()

        assert type(out['beta'].data) == np.ndarray
        assert type(out['t'].data) == np.ndarray
        assert type(out['p'].data) == np.ndarray
        assert type(out['residual'].data) == np.ndarray
        assert type(out['df'].data) == np.ndarray
        assert out['beta'].shape() == (2, shape_2d[1])
        assert out['t'][1].shape()[0] == shape_2d[1]

        # Robust OLS
        out = dat.regress(mode='robust')

        assert type(out['beta'].data) == np.ndarray
        assert type(out['t'].data) == np.ndarray
        assert type(out['p'].data) == np.ndarray
        assert type(out['residual'].data) == np.ndarray
        assert type(out['df'].data) == np.ndarray
        assert out['beta'].shape() == (2, shape_2d[1])
        assert out['t'][1].shape()[0] == shape_2d[1]

        # Test threshold
        i=1
        tt = threshold(out['t'][i], out['p'][i], .05)
        assert isinstance(tt, Brain_Data)

        # Test write
        dat.write(os.path.join(str(tmpdir.join('test_write.nii'))))
        assert Brain_Data(os.path.join(str(tmpdir.join('test_write.nii'))))

        # Test append
        assert dat.append(dat).shape()[0] == shape_2d[0]*2

        # Test distance
        distance = dat.distance(method='euclidean')
        assert isinstance(distance, Adjacency)
        assert distance.square_shape()[0] == shape_2d[0]

        # Test predict
        stats = dat.predict(algorithm='svm',
                            cv_dict={'type': 'kfolds', 'n_folds': 2},
                            plot=False, **{'kernel':"linear"})

        # Support Vector Regression, with 5 fold cross-validation with Platt Scaling
        # This will output probabilities of each class
        stats = dat.predict(algorithm='svm',
                            cv_dict=None, plot=False,
                            **{'kernel':'linear', 'probability':True})
        assert isinstance(stats['weight_map'], Brain_Data)

        # Logistic classificiation, with 2 fold cross-validation.
        stats = dat.predict(algorithm='logistic',
                            cv_dict={'type': 'kfolds', 'n_folds': 2},
                            plot=False)
        assert isinstance(stats['weight_map'], Brain_Data)

        # Ridge classificiation,
        stats = dat.predict(algorithm='ridgeClassifier', cv_dict=None, plot=False)
        assert isinstance(stats['weight_map'], Brain_Data)

        # Ridge
        stats = dat.predict(algorithm='ridge',
                            cv_dict={'type': 'kfolds', 'n_folds': 2,
                            'subject_id':holdout}, plot=False, **{'alpha':.1})

        # Lasso
        stats = dat.predict(algorithm='lasso',
                            cv_dict={'type': 'kfolds', 'n_folds': 2,
                            'stratified':dat.Y}, plot=False, **{'alpha':.1})

        # PCR
        stats = dat.predict(algorithm='pcr', cv_dict=None, plot=False)

        # Test Similarity
        r = dat.similarity(stats['weight_map'])
        assert len(r) == shape_2d[0]
        r2 = dat.similarity(stats['weight_map'].to_nifti())
        assert len(r2) == shape_2d[0]
        r = dat.similarity(stats['weight_map'], method='dot_product')
        assert len(r) == shape_2d[0]
        r = dat.similarity(stats['weight_map'], method='cosine')
        assert len(r) == shape_2d[0]
        r = dat.similarity(dat, method='correlation')
        assert r.shape == (dat.shape()[0],dat.shape()[0])
        r = dat.similarity(dat, method='dot_product')
        assert r.shape == (dat.shape()[0],dat.shape()[0])
        r = dat.similarity(dat, method='cosine')
        assert r.shape == (dat.shape()[0],dat.shape()[0])

        # Test apply_mask - might move part of this to test mask suite
        s1 = create_sphere([12, 10, -8], radius=10)
        assert isinstance(s1, nb.Nifti1Image)
        masked_dat = dat.apply_mask(s1)
        assert masked_dat.shape()[1] == np.sum(s1.get_data() != 0)

        # Test extract_roi
        mask = create_sphere([12, 10, -8], radius=10)
        assert len(dat.extract_roi(mask)) == shape_2d[0]

        # Test r_to_z
        z = dat.r_to_z()
        assert z.shape() == dat.shape()

        # Test copy
        d_copy = dat.copy()
        assert d_copy.shape() == dat.shape()

        # Test detrend
        detrend = dat.detrend()
        assert detrend.shape() == dat.shape()

        # Test standardize
        s = dat.standardize()
        assert s.shape() == dat.shape()
        assert np.isclose(np.sum(s.mean().data), 0, atol=.1)
        s = dat.standardize(method='zscore')
        assert s.shape() == dat.shape()
        assert np.isclose(np.sum(s.mean().data), 0, atol=.1)

        # Test Sum
        s = dat.sum()
        assert s.shape() == dat[1].shape()

        # Test Groupby
        s1 = create_sphere([12, 10, -8], radius=10)
        s2 = create_sphere([22, -2, -22], radius=10)
        mask = Brain_Data([s1, s2])
        d = dat.groupby(mask)
        assert isinstance(d, Groupby)

        # Test Aggregate
        mn = dat.aggregate(mask, 'mean')
        assert isinstance(mn, Brain_Data)
        assert len(mn.shape()) == 1

        # Test Threshold
        s1 = create_sphere([12, 10, -8], radius=10)
        s2 = create_sphere([22, -2, -22], radius=10)
        mask = Brain_Data(s1)*5
        mask = mask + Brain_Data(s2)

        m1 = mask.threshold(upper=.5)
        m2 = mask.threshold(upper=3)
        m3 = mask.threshold(upper='98%')
        m4 = Brain_Data(s1)*5 + Brain_Data(s2)*-.5
        m4 = mask.threshold(upper=.5,lower=-.3)
        assert np.sum(m1.data > 0) > np.sum(m2.data > 0)
        assert np.sum(m1.data > 0) == np.sum(m3.data > 0)
        assert np.sum(m4.data[(m4.data > -.3) & (m4.data <.5)]) == 0
        assert np.sum(m4.data[(m4.data < -.3) | (m4.data >.5)]) > 0

        # Test Regions
        r = mask.regions(min_region_size=10)
        m1 = Brain_Data(s1)
        m2 = r.threshold(1, binarize=True)
        # assert len(r)==2
        assert len(np.unique(r.to_nifti().get_data())) == 2
        diff = m2-m1
        assert np.sum(diff.data) == 0

        # Test Bootstrap
        masked = dat.apply_mask(create_sphere(radius=10, coordinates=[0, 0, 0]))
        n_samples = 3
        b = masked.bootstrap('mean', n_samples=n_samples)
        assert isinstance(b['Z'], Brain_Data)
        b = masked.bootstrap('std', n_samples=n_samples)
        assert isinstance(b['Z'], Brain_Data)
        b = masked.bootstrap('predict', n_samples=n_samples, plot=False)
        assert isinstance(b['Z'], Brain_Data)
        b = masked.bootstrap('predict', n_samples=n_samples,
                        plot=False, cv_dict={'type':'kfolds','n_folds':3})
        assert isinstance(b['Z'], Brain_Data)
        b = masked.bootstrap('predict', n_samples=n_samples,
                        save_weights=True, plot=False)
        assert len(b['samples'])==n_samples

        # Test decompose
        n_components = 3
        stats = dat.decompose(algorithm='pca', axis='voxels',
                              n_components=n_components)
        assert n_components == len(stats['components'])
        assert stats['weights'].shape == (len(dat), n_components)

        stats = dat.decompose(algorithm='ica', axis='voxels',
                              n_components=n_components)
        assert n_components == len(stats['components'])
        assert stats['weights'].shape == (len(dat), n_components)

        dat.data = dat.data + 2
        dat.data[dat.data<0] = 0
        stats = dat.decompose(algorithm='nnmf', axis='voxels',
                              n_components=n_components)
        assert n_components == len(stats['components'])
        assert stats['weights'].shape == (len(dat), n_components)

        stats = dat.decompose(algorithm='fa', axis='voxels',
                              n_components=n_components)
        assert n_components == len(stats['components'])
        assert stats['weights'].shape == (len(dat), n_components)

        stats = dat.decompose(algorithm='pca', axis='images',
                              n_components=n_components)
        assert n_components == len(stats['components'])
        assert stats['weights'].shape == (len(dat), n_components)

        stats = dat.decompose(algorithm='ica', axis='images',
                              n_components=n_components)
        assert n_components == len(stats['components'])
        assert stats['weights'].shape == (len(dat), n_components)

        dat.data = dat.data + 2
        dat.data[dat.data<0] = 0
        stats = dat.decompose(algorithm='nnmf', axis='images',
                              n_components=n_components)
        assert n_components == len(stats['components'])
        assert stats['weights'].shape == (len(dat), n_components)

        stats = dat.decompose(algorithm='fa', axis='images',
                              n_components=n_components)
        assert n_components == len(stats['components'])
        assert stats['weights'].shape == (len(dat), n_components)

        # Test Hyperalignment Method
        sim = Simulator()
        y = [0, 1]
        n_reps = 10
        s1 = create_sphere([0, 0, 0], radius=3)
        d1 = sim.create_data(y, 1, reps=n_reps, output_dir=None).apply_mask(s1)
        d2 = sim.create_data(y, 2, reps=n_reps, output_dir=None).apply_mask(s1)
        d3 = sim.create_data(y, 3, reps=n_reps, output_dir=None).apply_mask(s1)

        # Test procrustes using align
        data = [d1, d2, d3]
        out = align(data, method='procrustes')
        assert len(data) == len(out['transformed'])
        assert len(data) == len(out['transformation_matrix'])
        assert data[0].shape() == out['common_model'].shape()
        transformed = np.dot(d1.data, out['transformation_matrix'][0])
        centered = d1.data - np.mean(d1.data, 0)
        transformed = (np.dot(centered/np.linalg.norm(centered), out['transformation_matrix'][0])*out['scale'][0])
        np.testing.assert_almost_equal(0, np.sum(out['transformed'][0].data - transformed), decimal=5)

        # Test deterministic brain_data
        bout = d1.align(out['common_model'], method='deterministic_srm')
        assert d1.shape() == bout['transformed'].shape()
        assert d1.shape() == bout['common_model'].shape()
        assert d1.shape()[1] == bout['transformation_matrix'].shape[0]
        btransformed = np.dot(d1.data, bout['transformation_matrix'])
        np.testing.assert_almost_equal(0, np.sum(bout['transformed'].data - btransformed))

        # Test deterministic brain_data
        bout = d1.align(out['common_model'], method='probabilistic_srm')
        assert d1.shape() == bout['transformed'].shape()
        assert d1.shape() == bout['common_model'].shape()
        assert d1.shape()[1] == bout['transformation_matrix'].shape[0]
        btransformed = np.dot(d1.data, bout['transformation_matrix'])
        np.testing.assert_almost_equal(0, np.sum(bout['transformed'].data-btransformed))

        # Test procrustes brain_data
        bout = d1.align(out['common_model'], method='procrustes')
        assert d1.shape() == bout['transformed'].shape()
        assert d1.shape() == bout['common_model'].shape()
        assert d1.shape()[1] == bout['transformation_matrix'].shape[0]
        centered = d1.data - np.mean(d1.data, 0)
        btransformed = (np.dot(centered/np.linalg.norm(centered), bout['transformation_matrix'])*bout['scale'])
        np.testing.assert_almost_equal(0, np.sum(bout['transformed'].data-btransformed), decimal=5)
        np.testing.assert_almost_equal(0, np.sum(out['transformed'][0].data - bout['transformed'].data))

        # Test hyperalignment on Brain_Data over time (axis=1)
        sim = Simulator()
        y = [0, 1]
        n_reps = 10
        s1 = create_sphere([0, 0, 0], radius=5)
        d1 = sim.create_data(y, 1, reps=n_reps, output_dir=None).apply_mask(s1)
        d2 = sim.create_data(y, 2, reps=n_reps, output_dir=None).apply_mask(s1)
        d3 = sim.create_data(y, 3, reps=n_reps, output_dir=None).apply_mask(s1)
        data = [d1, d2, d3]

        out = align(data, method='procrustes', axis=1)
        assert len(data) == len(out['transformed'])
        assert len(data) == len(out['transformation_matrix'])
        assert data[0].shape() == out['common_model'].shape()
        centered = data[0].data.T-np.mean(data[0].data.T, 0)
        transformed = (np.dot(centered/np.linalg.norm(centered), out['transformation_matrix'][0])*out['scale'][0])
        np.testing.assert_almost_equal(0,np.sum(out['transformed'][0].data-transformed.T), decimal=5)

        bout = d1.align(out['common_model'], method='deterministic_srm', axis=1)
        assert d1.shape() == bout['transformed'].shape()
        assert d1.shape() == bout['common_model'].shape()
        assert d1.shape()[0] == bout['transformation_matrix'].shape[0]
        btransformed = np.dot(d1.data.T, bout['transformation_matrix'])
        np.testing.assert_almost_equal(0, np.sum(bout['transformed'].data-btransformed.T))

        bout = d1.align(out['common_model'], method='probabilistic_srm', axis=1)
        assert d1.shape() == bout['transformed'].shape()
        assert d1.shape() == bout['common_model'].shape()
        assert d1.shape()[0] == bout['transformation_matrix'].shape[0]
        btransformed = np.dot(d1.data.T, bout['transformation_matrix'])
        np.testing.assert_almost_equal(0, np.sum(bout['transformed'].data-btransformed.T))

        bout = d1.align(out['common_model'], method='procrustes', axis=1)
        assert d1.shape() == bout['transformed'].shape()
        assert d1.shape() == bout['common_model'].shape()
        assert d1.shape()[0] == bout['transformation_matrix'].shape[0]
        centered = d1.data.T-np.mean(d1.data.T, 0)
        btransformed = (np.dot(centered/np.linalg.norm(centered), bout['transformation_matrix'])*bout['scale'])
        np.testing.assert_almost_equal(0, np.sum(bout['transformed'].data-btransformed.T), decimal=5)
        np.testing.assert_almost_equal(0, np.sum(out['transformed'][0].data-bout['transformed'].data))
Exemple #8
0
        f'{sub}_task-localizer_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz'
    ))

# Here are a few quick basic data operations.
#
# Find number of images in Brain_Data() instance

# In[49]:

print(len(data))

# Find the dimensions of the data (images x voxels)

# In[50]:

print(data.shape())

# We can use any type of indexing to slice the data such as integers, lists of integers, slices, or boolean vectors.

# In[51]:

import numpy as np

print(data[5].shape())

print(data[[1, 6, 2]].shape())

print(data[0:10].shape())

index = np.zeros(len(data), dtype=bool)
index[[1, 5, 9, 16, 20, 22]] = True
Exemple #9
0
    def import_and_convolve(self,
                            nifti_data,
                            onset_file,
                            data_mask=None,
                            motion_regressors=None):
        print("importing nifti")
        # import the nifti
        # load the nltools prepped file if it's available.
        if (os.path.isfile(nifti_data + self.data_fmri_space + ".nii.gz")):
            msmrl1 = Brain_Data(nifti_data + self.data_fmri_space + ".nii.gz",
                                mask=data_mask)
        else:  # but if it's not; no worries; just load the original one.
            msmrl1 = Brain_Data(nifti_data + ".nii.gz", mask=data_mask)
            msmrl1.write(nifti_data + self.data_fmri_space + ".nii.gz")

        # I want to standardize globally; this will preserve the relative strengths of each time point
        # and preserve the relative activity at each voxel.
        # and let's use the mean standard deviation across all the images.
        # msmrl1.data = msmrl1.data - np.tile(msmrl1.mean().mean(),msmrl1.data.shape)
        # msmrl1.data = msmrl1.data / np.tile(np.std(msmrl1.data,axis=1).mean(),msmrl1.data.shape)
        # OR we could apply the standardization to the OUTPUT.
        # grand_mean=msmrl1.mean().mean()
        # grand_sd=np.std(msmrl1.data,axis=1).mean()

        # preprocess the nifti?
        print("importing onsets")
        # import the onset
        onsets = onsets_to_dm(onset_file, TR=2, runLength=msmrl1.shape()[0])

        # process the onset files
        #
        onsets.sampling_rate = 2

        onsets_convolved = onsets.convolve()

        # delete columns with no information in them.
        for c in onsets_convolved.columns:
            if sum(onsets_convolved.ix[:, c]) <= 0:
                print('deleting ' + str(c))
                del onsets_convolved[c]

        rowcount = onsets_convolved.__len__()
        if rowcount != 360:
            warnings.warn(
                "Just a friendly FYI: expected number of rows is 360 but this subject had "
                + str(rowcount) +
                ". Probably this subject got cut off the task half-way through."
            )
        onsets_convolved['linearterm'] = range(1, rowcount + 1)

        onsets_convolved['quadraticterm'] = [
            pow(x, 2) for x in onsets_convolved['linearterm']
        ]
        onsets_convolved['cubicterm'] = [
            pow(x, 3) for x in onsets_convolved['linearterm']
        ]
        onsets_convolved['ones'] = [1] * rowcount

        if (motion_regressors is not None):
            onsets_convolved = pandas.concat(
                [onsets_convolved, motion_regressors], axis=1)

        msmrl1.X = onsets_convolved
        return msmrl1
Exemple #10
0
def test_brain_data(tmpdir):
    sim = Simulator()
    r = 10
    sigma = 1
    y = [0, 1]
    n_reps = 3
    output_dir = str(tmpdir)
    sim.create_data(y, sigma, reps=n_reps, output_dir=output_dir)

    shape_3d = (91, 109, 91)
    shape_2d = (6, 238955)
    y=pd.read_csv(os.path.join(str(tmpdir.join('y.csv'))), header=None,index_col=None).T
    holdout=pd.read_csv(os.path.join(str(tmpdir.join('rep_id.csv'))),header=None,index_col=None).T
    flist = glob.glob(str(tmpdir.join('centered*.nii.gz')))

    # Test load list
    dat = Brain_Data(data=flist,Y=y)

    # Test load file
    assert Brain_Data(flist[0])

    # Test to_nifti
    d = dat.to_nifti()
    assert d.shape[0:3] == shape_3d

    # Test load nibabel
    assert Brain_Data(d)

    # Test shape
    assert dat.shape() == shape_2d

    # Test Mean
    assert dat.mean().shape()[0] == shape_2d[1]

    # Test Std
    assert dat.std().shape()[0] == shape_2d[1]

    # Test add
    new = dat + dat
    assert new.shape() == shape_2d

    # Test subtract
    new = dat - dat
    assert new.shape() == shape_2d

    # Test multiply
    new = dat * dat
    assert new.shape() == shape_2d

    # Test Iterator
    x = [x for x in dat]
    assert len(x) == len(dat)
    assert len(x[0].data.shape) == 1

    # # Test T-test
    out = dat.ttest()
    assert out['t'].shape()[0] == shape_2d[1]

    # # # Test T-test - permutation method
    # out = dat.ttest(threshold_dict={'permutation':'tfce','n_permutations':50,'n_jobs':1})
    # assert out['t'].shape()[0]==shape_2d[1]

    # Test Regress
    dat.X = pd.DataFrame({'Intercept':np.ones(len(dat.Y)), 'X1':np.array(dat.Y).flatten()},index=None)
    out = dat.regress()
    assert out['beta'].shape() == (2,shape_2d[1])

    # Test indexing
    assert out['t'][1].shape()[0] == shape_2d[1]

    # Test threshold
    i=1
    tt = threshold(out['t'][i], out['p'][i], .05)
    assert isinstance(tt,Brain_Data)

    # Test write
    dat.write(os.path.join(str(tmpdir.join('test_write.nii'))))
    assert Brain_Data(os.path.join(str(tmpdir.join('test_write.nii'))))

    # Test append
    assert dat.append(dat).shape()[0]==shape_2d[0]*2

    # Test distance
    distance = dat.distance(method='euclidean')
    assert isinstance(distance,Adjacency)
    assert distance.square_shape()[0]==shape_2d[0]

    # Test predict
    stats = dat.predict(algorithm='svm', cv_dict={'type': 'kfolds','n_folds': 2}, plot=False,**{'kernel':"linear"})

    # Support Vector Regression, with 5 fold cross-validation with Platt Scaling
    # This will output probabilities of each class
    stats = dat.predict(algorithm='svm', cv_dict=None, plot=False,**{'kernel':'linear', 'probability':True})
    assert isinstance(stats['weight_map'],Brain_Data)

    # Logistic classificiation, with 2 fold cross-validation.
    stats = dat.predict(algorithm='logistic', cv_dict={'type': 'kfolds', 'n_folds': 2}, plot=False)
    assert isinstance(stats['weight_map'],Brain_Data)

    # Ridge classificiation,
    stats = dat.predict(algorithm='ridgeClassifier', cv_dict=None,plot=False)
    assert isinstance(stats['weight_map'],Brain_Data)

    # Ridge
    stats = dat.predict(algorithm='ridge', cv_dict={'type': 'kfolds', 'n_folds': 2,'subject_id':holdout}, plot=False,**{'alpha':.1})

    # Lasso
    stats = dat.predict(algorithm='lasso', cv_dict={'type': 'kfolds', 'n_folds': 2,'stratified':dat.Y}, plot=False,**{'alpha':.1})

    # PCR
    stats = dat.predict(algorithm='pcr', cv_dict=None, plot=False)

    # Test Similarity
    r = dat.similarity(stats['weight_map'])
    assert len(r) == shape_2d[0]
    r2 = dat.similarity(stats['weight_map'].to_nifti())
    assert len(r2) == shape_2d[0]

    # Test apply_mask - might move part of this to test mask suite
    s1 = create_sphere([12, 10, -8], radius=10)
    assert isinstance(s1, nb.Nifti1Image)
    s2 = Brain_Data(s1)
    masked_dat = dat.apply_mask(s1)
    assert masked_dat.shape()[1] == np.sum(s2.data != 0)

    # Test extract_roi
    mask = create_sphere([12, 10, -8], radius=10)
    assert len(dat.extract_roi(mask)) == shape_2d[0]

    # Test r_to_z
    z = dat.r_to_z()
    assert z.shape() == dat.shape()

    # Test copy
    d_copy = dat.copy()
    assert d_copy.shape() == dat.shape()

    # Test detrend
    detrend = dat.detrend()
    assert detrend.shape() == dat.shape()

    # Test standardize
    s = dat.standardize()
    assert s.shape() == dat.shape()
    assert np.isclose(np.sum(s.mean().data), 0, atol=.1)
    s = dat.standardize(method='zscore')
    assert s.shape() == dat.shape()
    assert np.isclose(np.sum(s.mean().data), 0, atol=.1)

    # Test Sum
    s = dat.sum()
    assert s.shape() == dat[1].shape()

    # Test Groupby
    s1 = create_sphere([12, 10, -8], radius=10)
    s2 = create_sphere([22, -2, -22], radius=10)
    mask = Brain_Data([s1, s2])
    d = dat.groupby(mask)
    assert isinstance(d, Groupby)

    # Test Aggregate
    mn = dat.aggregate(mask, 'mean')
    assert isinstance(mn, Brain_Data)
    assert len(mn.shape()) == 1

    # Test Threshold
    s1 = create_sphere([12, 10, -8], radius=10)
    s2 = create_sphere([22, -2, -22], radius=10)
    mask = Brain_Data(s1)*5
    mask = mask + Brain_Data(s2)

    m1 = mask.threshold(thresh=.5)
    m2 = mask.threshold(thresh=3)
    m3 = mask.threshold(thresh='98%')
    assert np.sum(m1.data > 0) > np.sum(m2.data > 0)
    assert np.sum(m1.data > 0) == np.sum(m3.data > 0)

    # Test Regions
    r = mask.regions(min_region_size=10)
    m1 = Brain_Data(s1)
    m2 = r.threshold(1, binarize=True)
    # assert len(r)==2
    assert len(np.unique(r.to_nifti().get_data())) == 2 # JC edit: I think this is what you were trying to do
    diff = m2-m1
    assert np.sum(diff.data) == 0
Exemple #11
0
#need to regress on this value PainLevel to build our regression of Pain


#we have number of subjects and we ought to build a model where 
#we correlate pain within-subject, then average across subjects
#or possibly a linear model in which we regress out each subject's mean then calculate across subjects
#or we could run a bunch of within-subject correlations of pain-level with voxel activity
#then train on the 84/3=18 images.
#ideally a linear repeated-measures model or something
#but Luke 

#sub113
sub113_onset_file='/Users/benjaminsmith/GDrive/joint-modeling/reversal-learning/behavioral-analysis/data/runfiles/runfilepunishmentcompare20170819T170218_s113_punishment_r1.txt'
msmrl1=Brain_Data('/Users/benjaminsmith/GDrive/joint-modeling/reversal-learning/behavioral-analysis/data/preprocessed/sub113/ReversalLearningPunishrun1.nii.gz')
type(msmrl1)
msmrl1.shape()


datamean=np.mean(msmrl1.data,axis=1)

with sns.plotting_context(context='paper',font_scale=2):
    sns.factorplot(data=pd.DataFrame(data=
                    {'ImageMean':datamean,
                     'Timepoint':range(1,361)})
    ,x='Timepoint',y='ImageMean')
    

msmrl1_demeaned=msmrl1-datamean
datamean.shape()
msmrl1.shape()
data_demeaned_mean=np.mean(msmrl1.data,axis=1)
Exemple #12
0
print(preproc_dir, subject_id, episode)
sub_cov, sub_epi = fileGetter(preproc_dir,subject_id,episode)

#Load run data
print("Loading brain data: {}".format(smooth))
dat = Brain_Data(sub_epi)

cov_mat = Design_Matrix(pd.read_csv(sub_cov[0]).fillna(0), sampling_rate=TR)
# Add Intercept
cov_mat['Intercept'] = 1
# Add Linear Trend
cov_mat['LinearTrend'] = range(cov_mat.shape[0])-np.mean(range(cov_mat.shape[0]))
cov_mat['QuadraticTrend'] = cov_mat['LinearTrend']**2
cov_mat['CSF'] = dat.extract_roi(csf.threshold(.85,binarize=True))

assert cov_mat.shape[0] == dat.shape()[0]
spikeless_idx =  np.logical_not( startswith(cov_mat.columns.values.astype(str), "spike") | startswith(cov_mat.columns.values.astype(str), "FD") )
#dat.X = cov_mat
dat.X = cov_mat.loc[:,spikeless_idx]
datcln = dat.regress()['residual']


# ## Loop through voxels to produce STPs

# In[14]:


zero_voxels = np.apply_along_axis(lambda x: np.count_nonzero(x) == 0, axis=0, arr=datcln.data)
zero_voxels = np.arange(datcln.data.shape[1])[zero_voxels]