def __init__(self): self.config = tf.ConfigProto( gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.23), # device_count = {'gpu': 2} ) self.session = tf.Session(config=self.config) self.model_test = create_model self.dataset = list( data_utils.prepare_multi_task_data(FLAGS.data_dir, FLAGS.in_vocab_size, FLAGS.out_vocab_size)) self.pred = run_valid_test(self.session, self.model_test, mode='Test', data_set=self.dataset)
def query(): message = str(request.args.get('message')) for way in WAY_LS: if way in message: message = message.replace("-", " ") user_in = PrepUtility.create_test_seq_in(message) PrepUtility.prepareNLUMessage(user_in, test_seq_in_path) date_set = prepare_multi_task_data(data_path, 10000, 10000) date_set = list(date_set) in_seq_test, out_seq_test, label_test = date_set[2] test_set = read_data_test(in_seq_test, out_seq_test, label_test) start = time.time() predictions = model.predict(test_set) #print(time.time()-start) response = get_response(message) return jsonify(response)
if ckpt: print("Reading model parameters from %s" % ckpt.model_checkpoint_path) model_test.saver.restore(session, ckpt.model_checkpoint_path) # model_train.saver.restore(session, ckpt.model_checkpoint_path) else: print("Created model with fresh parameters.") session.run(tf.global_variables_initializer()) return model_test #model_train, vocab_path = '' tag_vocab_path = '' label_vocab_path = '' date_set = data_utils.prepare_multi_task_data(FLAGS.data_dir, FLAGS.in_vocab_size, FLAGS.out_vocab_size) date_set = list(date_set) in_seq_train, out_seq_train, label_train = date_set[0] in_seq_dev, out_seq_dev, label_dev = date_set[1] in_seq_test, out_seq_test, label_test = date_set[2] vocab_path, tag_vocab_path, label_vocab_path = date_set[3] result_dir = FLAGS.model_dir + '/test_results' if not os.path.isdir(result_dir): os.makedirs(result_dir) current_taging_valid_out_file = result_dir + '/tagging.valid.hyp.txt' current_taging_test_out_file = result_dir + '/tagging.test.hyp.txt'
date_set = list(date_set) in_seq_test, out_seq_test, label_test = date_set[2] test_set = read_data_test(in_seq_test, out_seq_test, label_test) start = time.time() predictions = model.predict(test_set) #print(time.time()-start) response = get_response(message) return jsonify(response) @app.route("/api/countries") def countries(): response = dict(countries=COUNTRIES, classes=CLASSES) return jsonify(response) # Load chatting page @app.route('/') def index(): return render_template('chat.html') if __name__ == "__main__": date_set = prepare_multi_task_data(data_path, 10000, 10000) date_set = list(date_set) in_seq_test, out_seq_test, label_test = date_set[2] test_set = read_data_test(in_seq_test, out_seq_test, label_test) model.predict(test_set) write_json(dict(), "ticket.json") app.run(debug=False, port=1234)