def zf1d(s, size='auto'): dim = s.udic['ndim'] - 1 if size == 'auto': size = s.udic[dim]['size'] * 2 ret = ndarray_subclasser(zf_size)(s, size) ret.udic[dim]['size'] = size return ret
def fft_norm(s): ret = ndarray_subclasser( p.fft_norm )(s) _update_udic(ret) return ret
def fft_positive(s): ret = ndarray_subclasser( p.fft_positive )(s) _update_udic(ret) return ret
def fft_norm(s): ret = ndarray_subclasser(p.fft_norm)(s) _update_udic(ret) return ret
def fft_positive(s): ret = ndarray_subclasser(p.fft_positive)(s) _update_udic(ret) return ret