def test_vector_loaded(): space_type = 'cosinesimil' space_param = [] method_name = 'small_world_rand' index_name = method_name + '.index' index = nmslib_vector.init(space_type, space_param, method_name, nmslib_vector.DataType.VECTOR, nmslib_vector.DistType.FLOAT) for id, data in enumerate(read_data('sample_dataset.txt')): nmslib_vector.addDataPoint(index, id, data) query_time_param = ['initSearchAttempts=3'] nmslib_vector.loadIndex(index, index_name) print "The index %s is loaded" % index_name nmslib_vector.setQueryTimeParams(index, query_time_param) print 'Query time parameters are set' print "Results for the loaded index" k = 2 for idx, data in enumerate(read_data('sample_queryset.txt')): print idx, nmslib_vector.knnQuery(index, k, data) nmslib_vector.freeIndex(index)
def test_string_fresh(): DATA_STRS = [ "xyz", "beagcfa", "cea", "cb", "d", "c", "bdaf", "ddcd", "egbfa", "a", "fba", "bcccfe", "ab", "bfgbfdc", "bcbbgf", "bfbb" ] QUERY_STRS = ["abc", "def", "ghik"] space_type = 'leven' space_param = [] method_name = 'small_world_rand' index_name = method_name + '.index' index = nmslib_vector.init(space_type, space_param, method_name, nmslib_vector.DataType.STRING, nmslib_vector.DistType.INT) for id, data in enumerate(DATA_STRS): nmslib_vector.addDataPoint(index, id, data) index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4'] query_time_param = ['initSearchAttempts=3'] nmslib_vector.createIndex(index, index_param) nmslib_vector.setQueryTimeParams(index, query_time_param) print 'Query time parameters are set' print "Results for the freshly created index:" k = 2 for idx, data in enumerate(QUERY_STRS): print idx, nmslib_vector.knnQuery(index, k, data) nmslib_vector.saveIndex(index, index_name) print "The index %s is saved" % index_name nmslib_vector.freeIndex(index)
def test_vector_loaded(): space_type = 'cosinesimil' space_param = [] method_name = 'small_world_rand' index_name = method_name + '.index' index = nmslib_vector.init( space_type, space_param, method_name, nmslib_vector.DataType.VECTOR, nmslib_vector.DistType.FLOAT) for id, data in enumerate(read_data('sample_dataset.txt')): nmslib_vector.addDataPoint(index, id, data) query_time_param = ['initSearchAttempts=3'] nmslib_vector.loadIndex(index, index_name) print "The index %s is loaded" % index_name nmslib_vector.setQueryTimeParams(index,query_time_param) print 'Query time parameters are set' print "Results for the loaded index" k = 2 for idx, data in enumerate(read_data('sample_queryset.txt')): print idx, nmslib_vector.knnQuery(index, k, data) nmslib_vector.freeIndex(index)
def find_to_k(query_fp, k, nmslib_vector, category_index): t1 = time() if type(query_fp) == list: color = query_fp elif type(query_fp) == dict: color = query_fp['color'] else: print('bad fp') return top_k = nmslib_vector.knnQuery(category_index, k, color) t2 = time() print('find took = %s' % str(t2 - t1)) return top_k
def test_string_fresh(): DATA_STRS = ["xyz", "beagcfa", "cea", "cb", "d", "c", "bdaf", "ddcd", "egbfa", "a", "fba", "bcccfe", "ab", "bfgbfdc", "bcbbgf", "bfbb" ] QUERY_STRS = ["abc", "def", "ghik"] space_type = 'leven' space_param = [] method_name = 'small_world_rand' index_name = method_name + '.index' index = nmslib_vector.init( space_type, space_param, method_name, nmslib_vector.DataType.STRING, nmslib_vector.DistType.INT) for id, data in enumerate(DATA_STRS): nmslib_vector.addDataPoint(index, id, data) index_param = ['NN=17', 'initIndexAttempts=3', 'indexThreadQty=4'] query_time_param = ['initSearchAttempts=3'] nmslib_vector.createIndex(index, index_param) nmslib_vector.setQueryTimeParams(index, query_time_param) print 'Query time parameters are set' print "Results for the freshly created index:" k = 2 for idx, data in enumerate(QUERY_STRS): print idx, nmslib_vector.knnQuery(index, k, data) nmslib_vector.saveIndex(index, index_name) print "The index %s is saved" % index_name nmslib_vector.freeIndex(index)
def knn_query(self, index, vector): assert index[1] == vector.shape, repr((index[1], vector.shape)) return nmslib_vector.knnQuery(index[0], index[2], list(vector))
def query(self, v, n): import nmslib_vector return nmslib_vector.knnQuery(self._index, n, v.tolist())