def res_u_network(inputs,
                  output_dim=3,
                  keep_prob=1.0,
                  filter_size=8,
                  nr_downsamples=4,
                  nr_residual_blocks=3,
                  gated=True,
                  nonlinearity="concat_elu"):
    # store for as
    a = []
    # set nonlinearity
    nonlinearity = nn.set_nonlinearity(nonlinearity)
    # encoding piece
    x_i = inputs
    for i in xrange(nr_downsamples):
        for j in xrange(nr_residual_blocks):
            x_i = nn.res_block(x_i,
                               filter_size=filter_size,
                               keep_p=keep_prob,
                               gated=gated,
                               nonlinearity=nonlinearity,
                               name="res_encode_" + str(i) + "_block_" +
                               str(j))
        if i < nr_downsamples - 1:
            a.append(x_i)
            filter_size = filter_size * 2
            x_i = nn.res_block(x_i,
                               filter_size=filter_size,
                               keep_p=keep_prob,
                               gated=gated,
                               nonlinearity=nonlinearity,
                               stride=2,
                               name="res_encode_" + str(i) + "_block_" +
                               str(nr_residual_blocks))
    # decoding piece
    for i in xrange(nr_downsamples - 1):
        filter_size = filter_size / 2
        x_i = nn.transpose_conv_layer(x_i, 4, 2, filter_size,
                                      "up_conv_" + str(i))
        x_i = nn.res_block(x_i,
                           a=a.pop(),
                           filter_size=filter_size,
                           keep_p=keep_prob,
                           gated=gated,
                           nonlinearity=nonlinearity,
                           name="res_decode_" + str(i) + "_block_0")
        for j in xrange(nr_residual_blocks - 1):
            x_i = nn.res_block(x_i,
                               filter_size=filter_size,
                               keep_p=keep_prob,
                               gated=gated,
                               nonlinearity=nonlinearity,
                               name="res_decode_" + str(i) + "_block_" +
                               str(j + 1))

    x_i = nn.conv_layer(x_i, 3, 1, output_dim, "final_conv")
    x_i = tf.tanh(x_i)
    if output_dim > 1:
        x_i = x_i * (-inputs + 1.0)
    return x_i
def res_generator_network(batch_size,
                          shape,
                          inputs=None,
                          full_shape=None,
                          hidden_size=512,
                          filter_size=4,
                          nr_residual_blocks=1,
                          gated=True,
                          nonlinearity="concat_elu"):

    # new shape
    if shape[0] % 3 == 0:
        factor = 3
    else:
        factor = 2
    nr_upsamples = int(np.log2(shape[0] / factor))
    filter_size = filter_size * pow(2, nr_upsamples)

    # set nonlinearity
    nonlinearity = nn.set_nonlinearity(nonlinearity)

    # fc layer
    x_i = inputs
    x_i = nn.fc_layer(x_i,
                      pow(factor, len(shape)) * filter_size, "decode_layer",
                      nn.set_nonlinearity("elu"))
    x_i = tf.reshape(x_i, [batch_size] + len(shape) * [factor] + [filter_size])

    # decoding piece
    for i in xrange(nr_upsamples):
        filter_size = filter_size / 2
        x_i = nn.transpose_conv_layer(x_i, 4, 2, filter_size,
                                      "up_conv_" + str(i))
        for j in xrange(nr_residual_blocks):
            x_i = nn.res_block(x_i,
                               filter_size=filter_size,
                               gated=gated,
                               nonlinearity=nonlinearity,
                               name="res_decode_" + str(i) + "_block_" +
                               str(j))
    x_i = nn.conv_layer(x_i, 3, 1, 1, "final_conv")
    #x_i = tf.sigmoid(x_i)

    if full_shape is not None:
        if len(x_i.get_shape()) == 4:
            x_i = tf.pad(
                x_i,
                [[0, 0], [shape[0] / 2, full_shape[0] - (3 * shape[0] / 2)],
                 [shape[1] / 2, full_shape[1] - (3 * shape[1] / 2)], [0, 0]])
        elif len(x_i.get_shape()) == 5:
            x_i = tf.pad(
                x_i,
                [[0, 0], [shape[0] / 4, full_shape[0] - (5 * shape[0] / 4)],
                 [shape[1] / 4, full_shape[1] - (5 * shape[1] / 4)],
                 [shape[2] / 4, full_shape[2] - (5 * shape[2] / 4)], [0, 0]])

    return x_i
def xiao_network(inputs):
    # this network should never be used and only works of 512x512
    x_i = inputs
    nonlinearity = nn.set_nonlinearity("relu")
    x_i = nn.conv_layer(x_i, 8, 8, 128, "conv_1", nonlinearity)
    x_i = nn.conv_layer(x_i, 8, 8, 512, "conv_2", nonlinearity)
    x_i = nn.fc_layer(x_i, 1024, "fc", nonlinearity, flat=True)
    x_i = tf.expand_dims(x_i, axis=1)
    x_i = tf.expand_dims(x_i, axis=1)
    x_i = nn.transpose_conv_layer(x_i, 8, 8, 512, "trans_conv_1", nonlinearity)
    x_i = nn.transpose_conv_layer(x_i, 8, 8, 256, "trans_conv_2", nonlinearity)
    x_i = nn.transpose_conv_layer(x_i, 2, 2, 64, "trans_conv_4", nonlinearity)
    x_i = nn.transpose_conv_layer(x_i, 2, 2, 32, "trans_conv_5", nonlinearity)
    x_i = nn.transpose_conv_layer(x_i, 2, 2, 3, "trans_conv_6")
    boundary = tf.minimum(tf.maximum(tf.round(-inputs + .5), 0.0), 1.0)
    x_i = x_i * (-boundary + 1.0)
    #x_i = x_i * inputs
    return x_i
Exemple #4
0
    def _build_model(self, triplets):
        '''
            :param triplets: batches of triplets, [3*N, 64, 64, 3]
            :return: a model dict containing all Tensors
        '''

        model = {}
        if self._data_format == "NCHW":
            images = tf.transpose(triplets, [0, 3, 1, 2])

        shape_dict = {}
        shape_dict['conv1'] = [8, 8, 3, 16]
        with tf.variable_scope('conv1'):
            model['conv1'] = nn.conv_layer(
                self._data_format, triplets, 1, 'VALID',
                shape_dict['conv1'])  # [3N,57,57,16]
        model['pool1'] = nn.max_pool2d(self._data_format, model['conv1'], 2,
                                       'VALID')  # outsize [3N, 28, 28, 16]

        shape_dict['conv2'] = [5, 5, 16, 7]
        with tf.variable_scope('conv2'):
            model['conv2'] = nn.conv_layer(self._data_format, model['pool1'],
                                           1, 'VALID',
                                           shape_dict['conv2'])  # [3N,24,24,7]
        model['pool2'] = nn.max_pool2d(self._data_format, model['conv2'], 2,
                                       'SAME')  # [3N, 12, 12, 7]

        shape_dict['fc1'] = 256
        with tf.variable_scope('fc1'):
            model['fc1'] = nn.fc(model['pool2'],
                                 shape_dict['fc1'])  # [3N, 256]

        shape_dict['fc2'] = 16
        with tf.variable_scope('fc2'):
            model['fc2'] = nn.fc(model['fc1'], shape_dict['fc2'])  # [3N, 16]

        return model
Exemple #5
0
    def _build_model(self, image, max_instance, direct_slice, is_train=False, save_var=False, val_dict=None):

        model = {}
        if val_dict is None:
            # Not during validation, use pretrained weight
            feed_dict = self.data_dict
        else:
            # Duing validation, use the currently trained weight
            feed_dict = val_dict

        if save_var:
            # During training, weights are saved to var_dict
            var_dict = self.var_dict
        else:
            # During inference or validation, no need to save weights
            var_dict = None


        # Step1: build fcn8s and score_out which has shape[H, W, Classes]
        model['conv1_1'] = nn.conv_layer(image, feed_dict, "conv1_1", var_dict=var_dict)
        model['conv1_2'] = nn.conv_layer(model['conv1_1'], feed_dict, "conv1_2", var_dict=var_dict)
        model['pool1'] = nn.max_pool_layer(model['conv1_2'], "pool1")

        model['conv2_1'] = nn.conv_layer(model['pool1'], feed_dict, "conv2_1", var_dict=var_dict)
        model['conv2_2'] = nn.conv_layer(model['conv2_1'], feed_dict, "conv2_2", var_dict=var_dict)
        model['pool2'] = nn.max_pool_layer(model['conv2_2'], "pool2")

        model['conv3_1'] = nn.conv_layer(model['pool2'], feed_dict, "conv3_1", var_dict=var_dict)
        model['conv3_2'] = nn.conv_layer(model['conv3_1'], feed_dict, "conv3_2", var_dict=var_dict)
        model['conv3_3'] = nn.conv_layer(model['conv3_2'], feed_dict, "conv3_3", var_dict=var_dict)
        model['pool3'] = nn.max_pool_layer(model['conv3_3'], "pool3")

        model['conv4_1'] = nn.conv_layer(model['pool3'], feed_dict, "conv4_1", var_dict=var_dict)
        model['conv4_2'] = nn.conv_layer(model['conv4_1'], feed_dict, "conv4_2", var_dict=var_dict)
        model['conv4_3'] = nn.conv_layer(model['conv4_2'], feed_dict, "conv4_3", var_dict=var_dict)
        model['pool4'] = nn.max_pool_layer(model['conv4_3'], "pool4")


        model['conv5_1'] = nn.conv_layer(model['pool4'], feed_dict, "conv5_1", var_dict=var_dict)
        model['conv5_2'] = nn.conv_layer(model['conv5_1'], feed_dict, "conv5_2", var_dict=var_dict)
        model['conv5_3'] = nn.conv_layer(model['conv5_2'], feed_dict, "conv5_3", var_dict=var_dict)
        model['pool5'] = nn.max_pool_layer(model['conv5_3'], "pool5")

        model['conv6_1'] = nn.conv_layer(model['pool5'], feed_dict, "conv6_1",
                                         shape=[3, 3, 512, 512], dropout=is_train,
                                         keep_prob=0.5, var_dict=var_dict)

        model['conv6_2'] = nn.conv_layer(model['conv6_1'], feed_dict, "conv6_2",
                                         shape=[3, 3, 512, 512], dropout=is_train,
                                         keep_prob=0.5, var_dict=var_dict)

        model['conv6_3'] = nn.conv_layer(model['conv6_2'], feed_dict, "conv6_3",
                                         shape=[3, 3, 512, 4096], dropout=is_train,
                                         keep_prob=0.5, var_dict=var_dict)

        model['conv7'] = nn.conv_layer(model['conv6_3'], feed_dict, "conv7",
                                       shape=[1, 1, 4096, 4096], dropout=is_train,
                                       keep_prob=0.5, var_dict=var_dict)

        # Skip feature fusion
        model['score_fr'] = nn.conv_layer(model['conv7'], feed_dict, "score_fr_mask",
                                          shape=[1, 1, 4096, self.num_pred_class * max_instance], relu=False,
                                          dropout=False, var_dict=var_dict)

        # Upsample: score_fr*2
        upscore_fr_2s = nn.upscore_layer(model['score_fr'], feed_dict, "upscore_fr_2s_mask",
                                       tf.shape(model['pool4']), self.num_pred_class * max_instance,
                                       ksize=4, stride=2, var_dict=var_dict)
        # Fuse upscore_fr_2s + score_pool4
        in_features = model['pool4'].get_shape()[3].value
        score_pool4 = nn.conv_layer(model['pool4'], feed_dict, "score_pool4_mask",
                                    shape=[1, 1, in_features, self.num_pred_class * max_instance],
                                    relu=False, dropout=False, var_dict=var_dict)

        fuse_pool4 = tf.add(upscore_fr_2s, score_pool4)


        # Upsample fuse_pool4*2
        upscore_pool4_2s = nn.upscore_layer(fuse_pool4, feed_dict, "upscore_pool4_2s_mask",
                                            tf.shape(model['pool3']), self.num_pred_class * max_instance,
                                            ksize=4, stride=2, var_dict=var_dict)

        # Fuse  upscore_pool4_2s + score_pool3
        in_features = model['pool3'].get_shape()[3].value
        score_pool3 = nn.conv_layer(model['pool3'], self.data_dict, "score_pool3_mask",
                                    shape=[1, 1, in_features, self.num_pred_class * max_instance],
                                    relu=False, dropout=False, var_dict=var_dict)

        score_out = tf.add(upscore_pool4_2s, score_pool3)

    
       
        # Upsample to original size *8 # Or we have to do it by class
        model['upmask'] = nn.upscore_layer(score_out, feed_dict,
                                  "upmask", tf.shape(image), self.num_pred_class * max_instance,
                                  ksize=16, stride=8, var_dict=var_dict)

        print('InstanceFCN8s model is builded successfully!')
        print('Model: %s' % str(model.keys()))
        return model
Exemple #6
0
    def _build_model(self,
                     image,
                     num_classes,
                     is_train=False,
                     scale_min='fcn16s',
                     save_var=False,
                     val_dict=None):

        model = {}
        if val_dict is None:
            # Not during validation, use pretrained weight
            feed_dict = self.data_dict
        else:
            # Duing validation, use the currently trained weight
            feed_dict = val_dict

        if save_var:
            # During training, weights are saved to var_dict
            var_dict = self.var_dict
        else:
            # During inference or validation, no need to save weights
            var_dict = None

        model['conv1_1'] = nn.conv_layer(image,
                                         feed_dict,
                                         "conv1_1",
                                         var_dict=var_dict)
        model['conv1_2'] = nn.conv_layer(model['conv1_1'],
                                         feed_dict,
                                         "conv1_2",
                                         var_dict=var_dict)
        model['pool1'] = nn.max_pool_layer(model['conv1_2'], "pool1")

        model['conv2_1'] = nn.conv_layer(model['pool1'],
                                         feed_dict,
                                         "conv2_1",
                                         var_dict=var_dict)
        model['conv2_2'] = nn.conv_layer(model['conv2_1'],
                                         feed_dict,
                                         "conv2_2",
                                         var_dict=var_dict)
        model['pool2'] = nn.max_pool_layer(model['conv2_2'], "pool2")

        model['conv3_1'] = nn.conv_layer(model['pool2'],
                                         feed_dict,
                                         "conv3_1",
                                         var_dict=var_dict)
        model['conv3_2'] = nn.conv_layer(model['conv3_1'],
                                         feed_dict,
                                         "conv3_2",
                                         var_dict=var_dict)
        model['conv3_3'] = nn.conv_layer(model['conv3_2'],
                                         feed_dict,
                                         "conv3_3",
                                         var_dict=var_dict)
        model['pool3'] = nn.max_pool_layer(model['conv3_3'], "pool3")

        model['conv4_1'] = nn.conv_layer(model['pool3'],
                                         feed_dict,
                                         "conv4_1",
                                         var_dict=var_dict)
        model['conv4_2'] = nn.conv_layer(model['conv4_1'],
                                         feed_dict,
                                         "conv4_2",
                                         var_dict=var_dict)
        model['conv4_3'] = nn.conv_layer(model['conv4_2'],
                                         feed_dict,
                                         "conv4_3",
                                         var_dict=var_dict)
        model['pool4'] = nn.max_pool_layer(model['conv4_3'], "pool4")

        model['conv5_1'] = nn.conv_layer(model['pool4'],
                                         feed_dict,
                                         "conv5_1",
                                         var_dict=var_dict)
        model['conv5_2'] = nn.conv_layer(model['conv5_1'],
                                         feed_dict,
                                         "conv5_2",
                                         var_dict=var_dict)
        model['conv5_3'] = nn.conv_layer(model['conv5_2'],
                                         feed_dict,
                                         "conv5_3",
                                         var_dict=var_dict)
        model['pool5'] = nn.max_pool_layer(model['conv5_3'], "pool5")

        model['conv6_1'] = nn.conv_layer(model['pool5'],
                                         feed_dict,
                                         "conv6_1",
                                         shape=[3, 3, 512, 512],
                                         dropout=is_train,
                                         keep_prob=0.5,
                                         var_dict=var_dict)

        model['conv6_2'] = nn.conv_layer(model['conv6_1'],
                                         feed_dict,
                                         "conv6_2",
                                         shape=[3, 3, 512, 512],
                                         dropout=is_train,
                                         keep_prob=0.5,
                                         var_dict=var_dict)

        model['conv6_3'] = nn.conv_layer(model['conv6_2'],
                                         feed_dict,
                                         "conv6_3",
                                         shape=[3, 3, 512, 4096],
                                         dropout=is_train,
                                         keep_prob=0.5,
                                         var_dict=var_dict)

        model['conv7'] = nn.conv_layer(model['conv6_3'],
                                       feed_dict,
                                       "conv7",
                                       shape=[1, 1, 4096, 4096],
                                       dropout=is_train,
                                       keep_prob=0.5,
                                       var_dict=var_dict)

        model['score_fr'] = nn.conv_layer(model['conv7'],
                                          feed_dict,
                                          "score_fr",
                                          shape=[1, 1, 4096, num_classes],
                                          relu=False,
                                          dropout=False,
                                          var_dict=var_dict)

        # fcn32s is always calculated for now
        model['fcn32s'] = nn.upscore_layer(model['score_fr'],
                                           feed_dict,
                                           "upscore_fr_32s",
                                           tf.shape(image),
                                           num_classes,
                                           ksize=64,
                                           stride=32,
                                           var_dict=var_dict)

        # fcn16s is calculated also when scale_min is *8, because we need to calculate fuse_pool4 anyway
        if scale_min == 'fcn16s' or scale_min == 'fcn8s':
            upscore_fr_2s = nn.upscore_layer(model['score_fr'],
                                             feed_dict,
                                             "upscore_fr_2s",
                                             tf.shape(model['pool4']),
                                             num_classes,
                                             ksize=4,
                                             stride=2,
                                             var_dict=var_dict)

            # Fuse fc8 *2, pool4
            in_features = model['pool4'].get_shape()[3].value
            score_pool4 = nn.conv_layer(model['pool4'],
                                        feed_dict,
                                        "score_pool4",
                                        shape=[1, 1, in_features, num_classes],
                                        relu=False,
                                        dropout=False,
                                        var_dict=var_dict)

            fuse_pool4 = tf.add(upscore_fr_2s, score_pool4)

            # Upsample fusion *16
            model['fcn16s'] = nn.upscore_layer(fuse_pool4,
                                               feed_dict,
                                               "upscore_pool4_16s",
                                               tf.shape(image),
                                               num_classes,
                                               ksize=32,
                                               stride=16,
                                               var_dict=var_dict)

        # fcn8s is calculated only when scale_min is *8
        if scale_min == 'fcn8s':
            # Upsample fc8 *4
            upscore_pool4_2s = nn.upscore_layer(fuse_pool4,
                                                feed_dict,
                                                "upscore_pool4_2s",
                                                tf.shape(model['pool3']),
                                                num_classes,
                                                ksize=4,
                                                stride=2,
                                                var_dict=var_dict)

            # Fuse fc8 *4, pool4 *2, pool3
            in_features = model['pool3'].get_shape()[3].value
            score_pool3 = nn.conv_layer(model['pool3'],
                                        self.data_dict,
                                        "score_pool3",
                                        shape=[1, 1, in_features, num_classes],
                                        relu=False,
                                        dropout=False,
                                        var_dict=var_dict)

            fuse_pool3 = tf.add(score_pool3, upscore_pool4_2s)

            # Upsample fusion *8
            model['fcn8s'] = nn.upscore_layer(fuse_pool3,
                                              feed_dict,
                                              "upscore8",
                                              tf.shape(image),
                                              num_classes,
                                              ksize=16,
                                              stride=8,
                                              var_dict=var_dict)

        #self.var_dict = var_dict
        print('Model with scale %s is builded successfully!' % scale_min)
        print('Model: %s' % str(model.keys()))
        return model
Exemple #7
0
    def _build_model(self, image, is_train=False):
        '''If is_train, save weight to self._var_dict,
           otherwise, don't save weights'''

        model = {}
        feed_dict = self._weight_dict
        if is_train:
            var_dict = self._var_dict
        else:
            var_dict = None

        if is_train:
            dropout = True
        else:
            dropout = False

        shape_dict = {}
        shape_dict['B0'] = [3, 3, 3, 64]

        # B0: [H,W,3] -> [H,W,64]
        with tf.variable_scope('B0'):
            model['B0'] = nn.conv_layer(image, feed_dict, 1, 'SAME',
                                        shape_dict['B0'], var_dict)

        # B2_1: [H,W,64] -> [H/2, W/2, 128]
        shape_dict['B2'] = {}
        shape_dict['B2']['side'] = [1, 1, 64, 128]
        shape_dict['B2']['convs'] = [[3, 3, 64, 128], [3, 3, 128, 128]]
        with tf.variable_scope('B2_1'):
            model['B2_1'] = nn.ResUnit_downsample_2convs(model['B0'],
                                                         feed_dict,
                                                         shape_dict['B2'],
                                                         var_dict=var_dict)
        # B2_2, B2_3: [H/2, W/2, 128]
        for i in range(2):
            with tf.variable_scope('B2_' + str(i + 2)):
                model['B2_' + str(i + 2)] = nn.ResUnit_2convs(
                    model['B2_' + str(i + 1)],
                    feed_dict,
                    shape_dict['B2']['convs'][1],
                    var_dict=var_dict)

        # B3_1: [H/2, W/2, 128] -> [H/4, W/4, 256]
        shape_dict['B3'] = {}
        shape_dict['B3']['side'] = [1, 1, 128, 256]
        shape_dict['B3']['convs'] = [[3, 3, 128, 256], [3, 3, 256, 256]]
        with tf.variable_scope('B3_1'):
            model['B3_1'] = nn.ResUnit_downsample_2convs(model['B2_3'],
                                                         feed_dict,
                                                         shape_dict['B3'],
                                                         var_dict=var_dict)
        # B3_2, B3_3: [H/4, W/4, 256]
        for i in range(2):
            with tf.variable_scope('B3_' + str(i + 2)):
                model['B3_' + str(i + 2)] = nn.ResUnit_2convs(
                    model['B3_' + str(i + 1)],
                    feed_dict,
                    shape_dict['B3']['convs'][1],
                    var_dict=var_dict)
        # B4_1: [H/4, W/4, 256] -> [H/8, W/8, 512]
        shape_dict['B4'] = {}
        shape_dict['B4']['side'] = [1, 1, 256, 512]
        shape_dict['B4']['convs'] = [[3, 3, 256, 512], [3, 3, 512, 512]]
        with tf.variable_scope('B4_1'):
            model['B4_1'] = nn.ResUnit_downsample_2convs(model['B3_3'],
                                                         feed_dict,
                                                         shape_dict['B4'],
                                                         var_dict=var_dict)
        # B4_2 ~ B4_6: [H/8, W/8, 512]
        for i in range(5):
            with tf.variable_scope('B4_' + str(i + 2)):
                model['B4_' + str(i + 2)] = nn.ResUnit_2convs(
                    model['B4_' + str(i + 1)],
                    feed_dict,
                    shape_dict['B4']['convs'][1],
                    var_dict=var_dict)
        # B5_1: [H/8, W/8, 512] -> [H/8, W/8, 1024]
        shape_dict['B5_1'] = {}
        shape_dict['B5_1']['side'] = [1, 1, 512, 1024]
        shape_dict['B5_1']['convs'] = [[3, 3, 512, 512], [3, 3, 512, 1024]]
        with tf.variable_scope('B5_1'):
            model['B5_1'] = nn.ResUnit_hybrid_dilate_2conv(model['B4_6'],
                                                           feed_dict,
                                                           shape_dict['B5_1'],
                                                           var_dict=var_dict)
        # B5_2, B5_3: [H/8, W/8, 1024]
        # Shape for B5_2, B5_3
        shape_dict['B5_2_3'] = [[3, 3, 1024, 512], [3, 3, 512, 1024]]
        for i in range(2):
            with tf.variable_scope('B5_' + str(i + 2)):
                model['B5_' + str(i + 2)] = nn.ResUnit_full_dilate_2convs(
                    model['B5_' + str(i + 1)],
                    feed_dict,
                    shape_dict['B5_2_3'],
                    var_dict=var_dict)

        # B6: [H/8, W/8, 1024] -> [H/8, W/8, 2048]
        shape_dict['B6'] = [[1, 1, 1024, 512], [3, 3, 512, 1024],
                            [1, 1, 1024, 2048]]
        with tf.variable_scope('B6'):
            model['B6'] = nn.ResUnit_hybrid_dilate_3conv(model['B5_3'],
                                                         feed_dict,
                                                         shape_dict['B6'],
                                                         dropout=dropout,
                                                         var_dict=var_dict)
        # B7: [H/8, W/8, 2048] -> [H/8, W/8, 4096]
        shape_dict['B7'] = [[1, 1, 2048, 1024], [3, 3, 1024, 2048],
                            [1, 1, 2048, 4096]]
        with tf.variable_scope('B7'):
            model['B7'] = nn.ResUnit_hybrid_dilate_3conv(model['B6'],
                                                         feed_dict,
                                                         shape_dict['B7'],
                                                         dropout=dropout,
                                                         var_dict=var_dict)

        # ResNet tail.
        shape_dict['Tail'] = [[3, 3, 4096, 512],
                              [3, 3, 512, self._num_classes]]
        with tf.variable_scope('Tail'):
            model['Tail'] = nn.ResUnit_tail(model['B7'], feed_dict,
                                            shape_dict['Tail'], var_dict)

        # Upsampling using Bilinear interpolation
        new_image_size = [1024, 2048]
        with tf.variable_scope('Bilinear'):
            model['Bilinear'] = nn.bilinear_upscore_layer(
                model['Tail'], new_image_size)

        return model
Exemple #8
0
    def _build_model(self, images, is_train=False):
        '''
        :param image: image in RGB format
        :param is_train: either True or False
        :return: main output and side supervision
        '''
        model = {}
        if is_train:
            dropout = True
        else:
            dropout = False
        if self._data_format == "NCHW":
            images = tf.transpose(images, [0, 3, 1, 2])

        shape_dict = {}
        shape_dict['B0'] = [3, 3, 3, 64]

        with tf.variable_scope('main'):
            # Residual Block B0
            with tf.variable_scope('B0'):
                model['B0'] = nn.conv_layer(self._data_format, images, 1,
                                            'SAME', shape_dict['B0'])

            # Pooling 1
            model['B0_pooled'] = nn.max_pool2d(self._data_format, model['B0'],
                                               2, 'SAME')

            # Residual Block B1_0, B1_1, B1_2
            shape_dict['B1'] = {}
            shape_dict['B1']['side'] = [1, 1, 64, 128]
            shape_dict['B1']['convs'] = [[3, 3, 64, 128], [3, 3, 128, 128]]
            with tf.variable_scope('B1_0'):
                model['B1_0'] = nn.res_side(self._data_format,
                                            model['B0_pooled'],
                                            shape_dict['B1'], is_train)
            for i in range(2):
                with tf.variable_scope('B1_' + str(i + 1)):
                    model['B1_' + str(i + 1)] = nn.res(
                        self._data_format, model['B1_' + str(i)],
                        shape_dict['B1']['convs'], is_train)

            # Pooling 2
            model['B1_2_pooled'] = nn.max_pool2d(self._data_format,
                                                 model['B1_2'], 2, 'SAME')

            # Residual Block B2_0, B2_1, B2_2
            shape_dict['B2'] = {}
            shape_dict['B2']['side'] = [1, 1, 128, 256]
            shape_dict['B2']['convs'] = [[3, 3, 128, 256], [3, 3, 256, 256]]
            with tf.variable_scope('B2_0'):
                model['B2_0'] = nn.res_side(self._data_format,
                                            model['B1_2_pooled'],
                                            shape_dict['B2'], is_train)
            for i in range(2):
                with tf.variable_scope('B2_' + str(i + 1)):
                    model['B2_' + str(i + 1)] = nn.res(
                        self._data_format, model['B2_' + str(i)],
                        shape_dict['B2']['convs'], is_train)

            # Pooling 3
            model['B2_2_pooled'] = nn.max_pool2d(self._data_format,
                                                 model['B2_2'], 2, 'SAME')

            # Residual Block B3_0 - B3_5
            shape_dict['B3'] = {}
            shape_dict['B3']['side'] = [1, 1, 256, 512]
            shape_dict['B3']['convs'] = [[3, 3, 256, 512], [3, 3, 512, 512]]
            with tf.variable_scope('B3_0'):
                model['B3_0'] = nn.res_side(self._data_format,
                                            model['B2_2_pooled'],
                                            shape_dict['B3'], is_train)
            for i in range(5):
                with tf.variable_scope('B3_' + str(i + 1)):
                    model['B3_' + str(i + 1)] = nn.res(
                        self._data_format, model['B3_' + str(i)],
                        shape_dict['B3']['convs'], is_train)

            # Pooling 4
            model['B3_5_pooled'] = nn.max_pool2d(self._data_format,
                                                 model['B3_5'], 2, 'SAME')

            # Residual Block B4_0, B4_1, B4_2
            shape_dict['B4_0'] = {}
            shape_dict['B4_0']['side'] = [1, 1, 512, 1024]
            shape_dict['B4_0']['convs'] = [[3, 3, 512, 512], [3, 3, 512, 1024]]
            with tf.variable_scope('B4_0'):
                model['B4_0'] = nn.res_side(self._data_format,
                                            model['B3_5_pooled'],
                                            shape_dict['B4_0'], is_train)
            shape_dict['B4_23'] = [[3, 3, 1024, 512], [3, 3, 512, 1024]]
            for i in range(2):
                with tf.variable_scope('B4_' + str(i + 1)):
                    model['B4_' + str(i + 1)] = nn.res(self._data_format,
                                                       model['B4_' + str(i)],
                                                       shape_dict['B4_23'],
                                                       is_train)

            # add side conv path and upsample, crop to image size
            im_size = tf.shape(images)
            with tf.variable_scope('B1_side_path'):
                side_2 = nn.conv_layer(self._data_format, model['B1_2'], 1,
                                       'SAME', [3, 3, 128, 16])
                side_2 = nn.bias_layer(self._data_format, side_2, [16])
                side_2_f = nn.conv_transpose(self._data_format, side_2,
                                             [16, 16], 2, 'SAME')
                side_2_f = nn.crop_features(self._data_format, side_2_f,
                                            im_size)
            with tf.variable_scope('B2_side_path'):
                side_4 = nn.conv_layer(self._data_format, model['B2_2'], 1,
                                       'SAME', [3, 3, 256, 16])
                side_4 = nn.bias_layer(self._data_format, side_4, 16)
                side_4_f = nn.conv_transpose(self._data_format, side_4,
                                             [16, 16], 4, 'SAME')
                side_4_f = nn.crop_features(self._data_format, side_4_f,
                                            im_size)
            with tf.variable_scope('B3_side_path'):
                side_8 = nn.conv_layer(self._data_format, model['B3_5'], 1,
                                       'SAME', [3, 3, 512, 16])
                side_8 = nn.bias_layer(self._data_format, side_8, 16)
                side_8_f = nn.conv_transpose(self._data_format, side_8,
                                             [16, 16], 8, 'SAME')
                side_8_f = nn.crop_features(self._data_format, side_8_f,
                                            im_size)
            with tf.variable_scope('B4_side_path'):
                side_16 = nn.conv_layer(self._data_format, model['B4_2'], 1,
                                        'SAME', [3, 3, 1024, 16])
                side_16 = nn.bias_layer(self._data_format, side_16, 16)
                side_16_f = nn.conv_transpose(self._data_format, side_16,
                                              [16, 16], 16, 'SAME')
                side_16_f = nn.crop_features(self._data_format, side_16_f,
                                             im_size)

            # add side path supervision
            sup_out = {}
            with tf.variable_scope('B1_side_sup'):
                side_2_s = nn.conv_layer(self._data_format, side_2, 1, 'SAME',
                                         [1, 1, 16, 2])
                side_2_s = nn.bias_layer(self._data_format, side_2_s, [2])
                side_2_s = nn.conv_transpose(self._data_format, side_2_s,
                                             [2, 2], 2, 'SAME')
                side_2_s = nn.crop_features(self._data_format, side_2_s,
                                            im_size)
                sup_out['side_2_s'] = side_2_s
            with tf.variable_scope('B2_side_sup'):
                side_4_s = nn.conv_layer(self._data_format, side_4, 1, 'SAME',
                                         [1, 1, 16, 2])
                side_4_s = nn.bias_layer(self._data_format, side_4_s, [2])
                side_4_s = nn.conv_transpose(self._data_format, side_4_s,
                                             [2, 2], 4, 'SAME')
                side_4_s = nn.crop_features(self._data_format, side_4_s,
                                            im_size)
                sup_out['side_4_s'] = side_4_s
            with tf.variable_scope('B3_side_sup'):
                side_8_s = nn.conv_layer(self._data_format, side_8, 1, 'SAME',
                                         [1, 1, 16, 2])
                side_8_s = nn.bias_layer(self._data_format, side_8_s, [2])
                side_8_s = nn.conv_transpose(self._data_format, side_8_s,
                                             [2, 2], 8, 'SAME')
                side_8_s = nn.crop_features(self._data_format, side_8_s,
                                            im_size)
                sup_out['side_8_s'] = side_8_s
            with tf.variable_scope('B4_side_sup'):
                side_16_s = nn.conv_layer(self._data_format, side_16, 1,
                                          'SAME', [1, 1, 16, 2])
                side_16_s = nn.bias_layer(self._data_format, side_16_s, [2])
                side_16_s = nn.conv_transpose(self._data_format, side_16_s,
                                              [2, 2], 16, 'SAME')
                side_16_s = nn.crop_features(self._data_format, side_16_s,
                                             im_size)
                sup_out['side_16_s'] = side_16_s

            # concat and linearly fuse
            if self._data_format == "NCHW":
                concat_side = tf.concat(
                    [side_2_f, side_4_f, side_8_f, side_16_f], axis=1)
            else:
                concat_side = tf.concat(
                    [side_2_f, side_4_f, side_8_f, side_16_f], axis=3)
            with tf.variable_scope('fuse'):
                net_out = nn.conv_layer(self._data_format, concat_side, 1,
                                        'SAME', [1, 1, 64, 2])
                net_out = nn.bias_layer(self._data_format, net_out, 2)

        return net_out, sup_out
Exemple #9
0
    def _build_model(self, image, is_train=False):
        '''If is_train, save weight to self._var_dict,
           otherwise, don't save weights'''

        model = {}
        feed_dict = self._weight_dict
        if is_train:
            var_dict = self._var_dict
        else:
            var_dict = None

        if is_train:
            dropout = True
        else:
            dropout = False

        shape_dict = {}
        shape_dict['B0'] = [3, 3, 3, 64]

        # B0: [H,W,3] -> [H,W,64]
        with tf.variable_scope('B0'):
            model['B0'] = nn.conv_layer(image, feed_dict, 1, 'SAME',
                                        shape_dict['B0'], var_dict)

        # B2_1: [H,W,64] -> [H/2, W/2, 128]
        shape_dict['B2'] = {}
        shape_dict['B2']['side'] = [1, 1, 64, 128]
        shape_dict['B2']['convs'] = [[3, 3, 64, 128], [3, 3, 128, 128]]
        with tf.variable_scope('B2_1'):
            model['B2_1'] = nn.ResUnit_downsample_2convs(model['B0'],
                                                         feed_dict,
                                                         shape_dict['B2'],
                                                         var_dict=var_dict)
        # B2_2, B2_3: [H/2, W/2, 128]
        for i in range(2):
            with tf.variable_scope('B2_' + str(i + 2)):
                model['B2_' + str(i + 2)] = nn.ResUnit_2convs(
                    model['B2_' + str(i + 1)],
                    feed_dict,
                    shape_dict['B2']['convs'][1],
                    var_dict=var_dict)

        # B3_1: [H/2, W/2, 128] -> [H/4, W/4, 256]
        shape_dict['B3'] = {}
        shape_dict['B3']['side'] = [1, 1, 128, 256]
        shape_dict['B3']['convs'] = [[3, 3, 128, 256], [3, 3, 256, 256]]
        with tf.variable_scope('B3_1'):
            model['B3_1'] = nn.ResUnit_downsample_2convs(model['B2_3'],
                                                         feed_dict,
                                                         shape_dict['B3'],
                                                         var_dict=var_dict)
        # B3_2, B3_3: [H/4, W/4, 256]
        for i in range(2):
            with tf.variable_scope('B3_' + str(i + 2)):
                model['B3_' + str(i + 2)] = nn.ResUnit_2convs(
                    model['B3_' + str(i + 1)],
                    feed_dict,
                    shape_dict['B3']['convs'][1],
                    var_dict=var_dict)
        # B4_1: [H/4, W/4, 256] -> [H/8, W/8, 512]
        shape_dict['B4'] = {}
        shape_dict['B4']['side'] = [1, 1, 256, 512]
        shape_dict['B4']['convs'] = [[3, 3, 256, 512], [3, 3, 512, 512]]
        with tf.variable_scope('B4_1'):
            model['B4_1'] = nn.ResUnit_downsample_2convs(model['B3_3'],
                                                         feed_dict,
                                                         shape_dict['B4'],
                                                         var_dict=var_dict)
        # B4_2 ~ B4_6: [H/8, W/8, 512]
        for i in range(5):
            with tf.variable_scope('B4_' + str(i + 2)):
                model['B4_' + str(i + 2)] = nn.ResUnit_2convs(
                    model['B4_' + str(i + 1)],
                    feed_dict,
                    shape_dict['B4']['convs'][1],
                    var_dict=var_dict)
        # B5_1: [H/8, W/8, 512] -> [H/8, W/8, 1024]
        shape_dict['B5_1'] = {}
        shape_dict['B5_1']['side'] = [1, 1, 512, 1024]
        shape_dict['B5_1']['convs'] = [[3, 3, 512, 512], [3, 3, 512, 1024]]
        with tf.variable_scope('B5_1'):
            model['B5_1'] = nn.ResUnit_hybrid_dilate_2conv(model['B4_6'],
                                                           feed_dict,
                                                           shape_dict['B5_1'],
                                                           var_dict=var_dict)
        # B5_2, B5_3: [H/8, W/8, 1024]
        # Shape for B5_2, B5_3
        shape_dict['B5_2_3'] = [[3, 3, 1024, 512], [3, 3, 512, 1024]]
        for i in range(2):
            with tf.variable_scope('B5_' + str(i + 2)):
                model['B5_' + str(i + 2)] = nn.ResUnit_full_dilate_2convs(
                    model['B5_' + str(i + 1)],
                    feed_dict,
                    shape_dict['B5_2_3'],
                    var_dict=var_dict)

        # B6: [H/8, W/8, 1024] -> [H/8, W/8, 2048]
        shape_dict['B6'] = [[1, 1, 1024, 512], [3, 3, 512, 1024],
                            [1, 1, 1024, 2048]]
        with tf.variable_scope('B6'):
            model['B6'] = nn.ResUnit_hybrid_dilate_3conv(model['B5_3'],
                                                         feed_dict,
                                                         shape_dict['B6'],
                                                         dropout=dropout,
                                                         var_dict=var_dict)
        # B7: [H/8, W/8, 2048] -> [H/8, W/8, 4096]
        shape_dict['B7'] = [[1, 1, 2048, 1024], [3, 3, 1024, 2048],
                            [1, 1, 2048, 4096]]
        with tf.variable_scope('B7'):
            model['B7'] = nn.ResUnit_hybrid_dilate_3conv(model['B6'],
                                                         feed_dict,
                                                         shape_dict['B7'],
                                                         dropout=dropout,
                                                         var_dict=var_dict)

        # ResNet tail. No conv, only batch_norm + activation
        shape_dict['Tail'] = 4096
        with tf.variable_scope('Tail'):
            model['Tail'] = nn.ResUnit_tail(model['B7'], feed_dict,
                                            shape_dict['Tail'], var_dict)

        # Global Pooling: [H/8, W/8, 4096] -> [4096]
        with tf.variable_scope('avg_pool'):
            model['pool_out'] = nn.Global_avg_pool(model['Tail'])

        # Fully connected: [4096] -> [10]
        with tf.variable_scope('FC'):
            batch_size = tf.shape(model['pool_out'])[0]
            model['fc_out'] = nn.FC(model['pool_out'], batch_size, feed_dict,
                                    self._num_classes, var_dict)

        return model