Exemple #1
0
def enc_up(x,
           c,
           init=False,
           dropout_p=0.5,
           n_scales=1,
           n_residual_blocks=2,
           activation="elu",
           n_filters=64,
           max_filters=128):
    with model_arg_scope(init=init, dropout_p=dropout_p,
                         activation=activation):
        # outputs
        hs = []
        # prepare input
        # 这一行也很奇怪, 为什么要把x和c连起来呢?
        # xc = tf.concat([x,c], axis = -1)
        xc = x
        h = nn.nin(xc, n_filters)
        for l in range(n_scales):
            # level module
            for i in range(n_residual_blocks):
                h = nn.residual_block(h)
                hs.append(h)
            # prepare input to next level
            if l + 1 < n_scales:
                # 似乎它这个channel一直都是128, 没有增长过.
                n_filters = min(2 * n_filters, max_filters)
                h = nn.downsample(h, n_filters)

        return hs
Exemple #2
0
def enc_up(
    x,
    c,
    init=False,
    dropout_p=0.5,
    n_scales=1,
    n_residual_blocks=2,
    activation="elu",
    n_filters=64,
    max_filters=128,
):
    with model_arg_scope(init=init, dropout_p=dropout_p,
                         activation=activation):
        """c is actually not used"""
        # outputs
        hs = []
        # prepare input
        # xc = tf.concat([x,c], axis = -1)
        xc = x
        h = nn.nin(xc, n_filters)
        for l in range(n_scales):
            # level module
            for i in range(n_residual_blocks):
                h = nn.residual_block(h)
                hs.append(h)
            # prepare input to next level
            if l + 1 < n_scales:
                n_filters = min(2 * n_filters, max_filters)
                h = nn.downsample(h, n_filters)
        return hs
Exemple #3
0
def dec_up(
    c,
    init=False,
    dropout_p=0.5,
    n_scales=1,
    n_residual_blocks=2,
    activation="elu",
    n_filters=64,
    max_filters=128,
):
    with model_arg_scope(init=init, dropout_p=dropout_p,
                         activation=activation):
        # outputs
        hs = []
        # prepare input
        h = nn.nin(c, n_filters)
        for l in range(n_scales):
            # level module
            for i in range(n_residual_blocks):
                h = nn.residual_block(h)
                hs.append(h)
            # prepare input to next level
            if l + 1 < n_scales:
                n_filters = min(2 * n_filters, max_filters)
                h = nn.downsample(h, n_filters)
        return hs
Exemple #4
0
def dec_up(c,
           init=False,
           dropout_p=0.5,
           n_scales=1,
           n_residual_blocks=2,
           activation="elu",
           n_filters=64,
           max_filters=128):
    with model_arg_scope(init=init, dropout_p=dropout_p,
                         activation=activation):
        hs = []
        h = nn.nin(c, n_filters)
        for l in range(n_scales):
            for i in range(n_residual_blocks):
                h = nn.residual_block(h)
                hs.append(h)
            if l + 1 < n_scales:
                n_filters = min(2 * n_filters, max_filters)
                h = nn.downsample(h, n_filters)
        return hs
def cfn(
        x, init = False, dropout_p = 0.5,
        n_scales = 1, n_residual_blocks = 2, activation = "elu", n_filters = 64, max_filters = 128):
    with model_arg_scope(
            init = init, dropout_p = dropout_p, activation = activation):
        # outputs
        hs = []
        # prepare input
        xc = x
        h = nn.nin(xc, n_filters)
        for l in range(n_scales):
            # level module
            for i in range(n_residual_blocks):
                h = nn.residual_block(h)
                hs.append(h)
            # prepare input to next level
            if l + 1 < n_scales:
                n_filters = min(2*n_filters, max_filters)
                h = nn.downsample(h, n_filters)
        h_shape = h.shape.as_list()
        h = tf.reshape(h, [h_shape[0],1,1,h_shape[1]*h_shape[2]*h_shape[3]])
        h = nn.nin(h, 2*max_filters)
        hs.append(h)
        return hs