Exemple #1
0
 def setUp(self):
     ''' Set up. '''
     self.network = Network('test_net')
     self.network.set_input(InputLayer(3, 224))
     self.network.add('c1', ConvLayer(3, 64, 224, 3))
     self.network.add('p1', PoolingLayer(64, 7, 32))
     self.network.add('f1', FCLayer(64, 1000, 7))
def MLP_network(input_size, hiden_fc1, hiden_fc2, hiden_fc3, output_size):
    NN = Network('MLP_L')

    NN.set_input(InputLayer(input_size, 1))
    NN.add('fc1', FCLayer(input_size, hiden_fc1))
    NN.add('fc2', FCLayer(hiden_fc1, hiden_fc2))
    NN.add('fc3', FCLayer(hiden_fc2, hiden_fc3))
    NN.add('fc4', FCLayer(hiden_fc3, output_size))

    return NN
Exemple #3
0
    def test_iter(self):
        ''' Accessor iter. '''
        num = 0
        for layer in self.network:
            self.assertIn(layer, self.network)
            self.assertIsInstance(self.network[layer], Layer)
            num += 1
        self.assertEqual(len(self.network), num)

        network = Network('test_net')
        network.set_input(InputLayer(3, 224))
        with self.assertRaises(StopIteration):
            _ = next(iter(network))
Exemple #4
0
    def setUp(self):
        super(TestPipelineSegmentTiming, self).setUp()

        self.net1 = self.net['net1']

        self.net4 = self.net['net4']

        self.netlr = Network('net1')
        self.netlr.set_input_layer(InputLayer(10, 1))
        self.netlr.add('0p1', PoolingLayer(10, 1, 1))
        self.netlr.add('0p2', PoolingLayer(10, 1, 1))
        self.netlr.add('0p3', PoolingLayer(10, 1, 1))
        self.netlr.add('1', FCLayer(10, 20))
Exemple #5
0
 def test_add_lstm_cell(self):
     ''' Add LSTM cell. '''
     net = Network('LSTM')
     net.set_input_layer(InputLayer(512, 1))
     c, h = nns.add_lstm_cell(net, 'cell0', 512, net.INPUT_LAYER_KEY,
                              net.INPUT_LAYER_KEY, net.INPUT_LAYER_KEY)
     c, h = nns.add_lstm_cell(net, 'cell1', 512, net.INPUT_LAYER_KEY, c, h)
     c, h = nns.add_lstm_cell(net, 'cell2', 512, net.INPUT_LAYER_KEY, c, h)
     num_weights = 0
     for layer in net:
         try:
             num_weights += net[layer].total_filter_size()
         except AttributeError:
             pass
     self.assertEqual(num_weights, 512 * 512 * 2 * 4 * 3)
Exemple #6
0
    def test_add_no_prev(self):
        ''' Modifier add no prevs. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 224))

        network.add('c1', ConvLayer(3, 64, 224, 3))
        with self.assertRaisesRegexp(KeyError, 'Network: .*prev.*p1.*'):
            network.add('p1', PoolingLayer(64, 7, 32), prevs='p1')
Exemple #7
0
    def test_add_same_key(self):
        ''' Modifier add same key. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 224))

        network.add('c1', ConvLayer(3, 64, 224, 3))
        with self.assertRaisesRegexp(KeyError, 'Network: .*c1.*'):
            network.add('c1', ConvLayer(64, 128, 224, 3))
Exemple #8
0
    def test_vertex_no_merge_lr(self):
        ''' LocalRegionLayer has no previous layer to merge with. '''
        net = Network('tmp_net')
        net.set_input_layer(InputLayer(30, 1))
        net.add('0', PoolingLayer(30, 1, 1))
        net.add('1', FCLayer(30, 40))
        net.add('1p', PoolingLayer(40, 1, 1))

        ilp = self._make_ilp(net)

        for layer in net:
            vidx = ilp.dag_vertex_dict[layer]

            self.assertIn(layer, ilp.dag_vertex_list[vidx])

            # Layer is named by topological order.
            self.assertTrue(layer.startswith(str(vidx)))
    def setUp(self):
        self.network = Network('test_net')
        self.network.set_input(InputLayer(3, 224))
        self.network.add('c1', ConvLayer(3, 64, 224, 3))
        self.network.add('p1', PoolingLayer(64, 7, 32), prevs='c1')
        self.network.add('p2', PoolingLayer(64, 7, 32), prevs='c1')
        self.network.add('f1', FCLayer(64, 1000, 7), prevs=['p1', 'p2'])

        self.batch_size = 4

        self.input_layout = partition.get_ofmap_layout(
            self.network.input_layer(), self.batch_size,
            PartitionScheme(order=range(pe.NUM), pdims=[(1, 1)] * pe.NUM),
            NodeRegion(origin=PhyDim2(0, 0), dim=PhyDim2(2, 1),
                       type=NodeRegion.DATA))

        self.c1res = SchedulingResult(
            dict_loop=OrderedDict([('cost', 1.), ('time', 2.), ('ops', 4.),
                                   ('access', [[7, 8, 9]] * me.NUM),
                                  ]),
            dict_part=OrderedDict([('cost', 0.5), ('total_nhops', [4, 5, 6]),
                                   ('num_nodes', 4),
                                  ]),
            ofmap_layout=partition.get_ofmap_layout(
                self.network['c1'], self.batch_size,
                PartitionScheme(order=range(pe.NUM), pdims=[(1, 1)] * pe.NUM),
                NodeRegion(origin=PhyDim2(0, 0), dim=PhyDim2(1, 2),
                           type=NodeRegion.DATA)))

        self.pres = SchedulingResult(
            dict_loop=OrderedDict([('cost', 0.1), ('time', 0.05), ('ops', 0.1),
                                   ('access', [[.7, .8, .9]] * me.NUM),
                                  ]),
            dict_part=OrderedDict([('cost', 0.5), ('total_nhops', [.4, .5, .6]),
                                   ('num_nodes', 2),
                                  ]),
            ofmap_layout=partition.get_ofmap_layout(
                self.network['p1'], self.batch_size,
                PartitionScheme(order=range(pe.NUM), pdims=[(1, 1)] * pe.NUM),
                NodeRegion(origin=PhyDim2(0, 0), dim=PhyDim2(1, 2),
                           type=NodeRegion.DATA)))

        self.dtfl = NNDataflowScheme(self.network, self.input_layout)
        self.dtfl['c1'] = self.c1res
        self.dtfl['p1'] = self.pres
        self.dtfl['p2'] = self.pres
Exemple #10
0
 def test_set_input(self):
     ''' Modifier set_input. '''
     network = Network('test_net')
     network.set_input(InputLayer(3, 24))
     self.assertIsInstance(network.input_layer(), InputLayer)
     self.assertEqual(network.input_layer().nofm, 3)
     self.assertEqual(network.input_layer().hofm, 24)
     self.assertEqual(network.input_layer().wofm, 24)
     self.assertEqual(len(network), 0)
Exemple #11
0
 def test_set_input_type(self):
     ''' Modifier set_input type. '''
     network = Network('test_net')
     with self.assertRaisesRegexp(TypeError, 'Network: .*input_layer.*'):
         network.set_input(Layer(3, 24))
     with self.assertRaisesRegexp(TypeError, 'Network: .*input_layer.*'):
         network.set_input(ConvLayer(3, 8, 24, 3))
Exemple #12
0
    def test_add_invalid_type(self):
        ''' Modifier add invalid type. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 224))

        with self.assertRaisesRegexp(TypeError, 'Network: .*Layer.*'):
            network.add('c1', (3, 64, 224, 3))
    def test_add_ext_same_key(self):
        ''' Modifier add_ext same key. '''
        network = Network('test_net')

        network.add_ext('e0', InputLayer(3, 24))
        with self.assertRaisesRegex(KeyError, 'Network: .*ext.*'):
            network.add_ext('e0', InputLayer(3, 24))
    def test_add_ext_invalid_type(self):
        ''' Modifier add_ext invalid type. '''
        network = Network('test_net')

        with self.assertRaisesRegex(TypeError, 'Network: .*external layer.*'):
            network.add_ext('e0', Layer(3, 24))
        with self.assertRaisesRegex(TypeError, 'Network: .*external layer.*'):
            network.add_ext('e0', ConvLayer(3, 8, 24, 3))
Exemple #15
0
    def test_len(self):
        ''' Accessor len. '''
        self.assertEqual(len(self.network), 3)

        network = Network('test_net')
        self.assertEqual(len(network), 0)
        network.set_input(InputLayer(3, 224))
        self.assertEqual(len(network), 0)
        network.add('c1', ConvLayer(3, 4, 224, 1))
        self.assertEqual(len(network), 1)

        self.network.add('f2', FCLayer(64, 2000, 7), prevs='p1')
        self.assertEqual(len(self.network), 4)
        self.network.add('f3', FCLayer(3000, 1000), prevs=('f1', 'f2'))
        self.assertEqual(len(self.network), 5)
        self.network.add('f4', FCLayer(1000, 1000), prevs=('f1', 'f3'))
        self.assertEqual(len(self.network), 6)
Exemple #16
0
PARTICULAR PURPOSE. See the BSD-3 License for more details.

You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""

from nn_dataflow.core import Network
from nn_dataflow.core import InputLayer, ConvLayer, PoolingLayer

'''
ResNet-152

He, Zhang, Ren, and Sun, 2015
'''

NN = Network('ResNet')

NN.set_input(InputLayer(3, 224))

_PREVS = None

NN.add('conv1', ConvLayer(3, 64, 112, 7, 2))
NN.add('pool1', PoolingLayer(64, 56, 2))

for i in range(1, 4):
    NN.add('conv2_{}_a'.format(i),
           ConvLayer(64, 64, 56, 1) if i == 1 else ConvLayer(256, 64, 56, 1),
           prevs=_PREVS)
    NN.add('conv2_{}_b'.format(i), ConvLayer(64, 64, 56, 3))
    NN.add('conv2_{}_c'.format(i), ConvLayer(64, 256, 56, 1))
Exemple #17
0
If you use this program in your research, we request that you reference the
TETRIS paper ("TETRIS: Scalable and Efficient Neural Network Acceleration with
3D Memory", in ASPLOS'17. April, 2017), and that you send us a citation of your
work.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the BSD-3 License for more details.

You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""

from nn_dataflow.core import Network
from nn_dataflow.core import InputLayer, FCLayer
'''
MLP-L

PRIME, 2016
'''

NN = Network('MLP-L')

NN.set_input(InputLayer(784, 1))

NN.add('fc1', FCLayer(784, 1500))
NN.add('fc2', FCLayer(1500, 1000))
NN.add('fc3', FCLayer(1000, 500))
NN.add('fc4', FCLayer(500, 10))
    def setUp(self):

        self.alex_net = import_network('alex_net')
        self.vgg_net = import_network('vgg_net')

        net = Network('simple')
        net.set_input_layer(InputLayer(4, 2))
        net.add('1', ConvLayer(4, 4, 2, 1))
        net.add('2', ConvLayer(4, 4, 2, 1))
        # Two more layers to avoid single-segment case.
        net.add('a1', ConvLayer(4, 1, 1, 1, strd=2))
        net.add('a2', ConvLayer(1, 1, 1, 1))
        self.simple_net = net

        net = Network('complex')
        net.set_input_layer(InputLayer(8, 8))
        net.add('1', ConvLayer(8, 8, 8, 1))
        net.add('2a', ConvLayer(8, 8, 8, 1), prevs=('1',))
        net.add('3a', ConvLayer(8, 8, 8, 1))
        net.add('2b', ConvLayer(8, 8, 8, 1), prevs=('1',))
        net.add('3b', ConvLayer(8, 8, 8, 1))
        net.add('4', ConvLayer(16, 8, 8, 1), prevs=('3a', '3b'))
        self.complex_net = net

        self.map_strategy = MapStrategyEyeriss

        self.resource = Resource(proc_region=NodeRegion(origin=PhyDim2(0, 0),
                                                        dim=PhyDim2(1, 1),
                                                        type=NodeRegion.PROC),
                                 dram_region=NodeRegion(
                                     origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                     type=NodeRegion.DRAM),
                                 src_data_region=NodeRegion(
                                     origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                     type=NodeRegion.DRAM),
                                 dst_data_region=NodeRegion(
                                     origin=PhyDim2(0, 0), dim=PhyDim2(1, 1),
                                     type=NodeRegion.DRAM),
                                 dim_array=PhyDim2(16, 16),
                                 size_gbuf=128 * 1024 // 2,  # 128 kB
                                 size_regf=512 // 2,  # 512 B
                                 array_bus_width=float('inf'),
                                 dram_bandwidth=float('inf'),
                                 no_time_mux=False,
                                )

        self.cost = Cost(mac_op=1,
                         mem_hier=(200, 6, 2, 1),
                         noc_hop=0,
                         idl_unit=0)

        self.options = Option()
Exemple #19
0
PARTICULAR PURPOSE. See the BSD-3 License for more details.

You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""

from nn_dataflow.core import Network
from nn_dataflow.core import InputLayer, ConvLayer, FCLayer, PoolingLayer

'''
ZFNet

Zeiler and Fergus, 2013
'''

NN = Network('ZFNet')

NN.set_input(InputLayer(3, 224))

NN.add('conv1', ConvLayer(3, 96, 110, 7, 2))
NN.add('pool1', PoolingLayer(96, 55, 3, strd=2))
# Norm layer is ignored.
NN.add('conv2', ConvLayer(96, 256, 26, 5, 2))
NN.add('pool2', PoolingLayer(256, 13, 3, strd=2))
# Norm layer is ignored.
NN.add('conv3', ConvLayer(256, 512, 13, 3))
NN.add('conv4', ConvLayer(512, 1024, 13, 3))
NN.add('conv5', ConvLayer(1024, 512, 13, 3))
NN.add('pool3', PoolingLayer(512, 6, 3, strd=2))
NN.add('fc1', FCLayer(512, 4096, 6))
NN.add('fc2', FCLayer(4096, 4096))
Exemple #20
0
    def test_add_no_input(self):
        ''' Modifier add no input. '''
        network = Network('test_net')

        with self.assertRaisesRegexp(RuntimeError, 'Network: .*input.*'):
            network.add('c1', ConvLayer(3, 64, 224, 3))
Exemple #21
0
class TestNetwork(unittest.TestCase):
    ''' Tests for Network. '''

    # pylint: disable=too-many-public-methods

    def setUp(self):
        ''' Set up. '''
        self.network = Network('test_net')
        self.network.set_input(InputLayer(3, 224))
        self.network.add('c1', ConvLayer(3, 64, 224, 3))
        self.network.add('p1', PoolingLayer(64, 7, 32))
        self.network.add('f1', FCLayer(64, 1000, 7))

    def test_set_input(self):
        ''' Modifier set_input. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 24))
        self.assertIsInstance(network.input_layer(), InputLayer)
        self.assertEqual(network.input_layer().nofm, 3)
        self.assertEqual(network.input_layer().hofm, 24)
        self.assertEqual(network.input_layer().wofm, 24)
        self.assertEqual(len(network), 0)

    def test_set_input_type(self):
        ''' Modifier set_input type. '''
        network = Network('test_net')
        with self.assertRaisesRegexp(TypeError, 'Network: .*input_layer.*'):
            network.set_input(Layer(3, 24))
        with self.assertRaisesRegexp(TypeError, 'Network: .*input_layer.*'):
            network.set_input(ConvLayer(3, 8, 24, 3))

    def test_set_input_duplicate(self):
        ''' Modifier set_input duplicate. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 24))
        with self.assertRaisesRegexp(KeyError, 'Network: .*input.*'):
            network.set_input(InputLayer(3, 24))

    def test_add(self):
        ''' Modifier add. '''
        self.assertEqual(len(self.network), 3)

        self.network.add('f2', FCLayer(64, 2000, 7), prevs='p1')
        self.network.add('f3', FCLayer(3000, 1000), prevs=('f1', 'f2'))
        self.network.add('f4', FCLayer(1000, 1000), prevs=('f1', 'f3'))
        self.assertEqual(len(self.network), 6)

    def test_add_same_key(self):
        ''' Modifier add same key. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 224))

        network.add('c1', ConvLayer(3, 64, 224, 3))
        with self.assertRaisesRegexp(KeyError, 'Network: .*c1.*'):
            network.add('c1', ConvLayer(64, 128, 224, 3))

    def test_add_no_input(self):
        ''' Modifier add no input. '''
        network = Network('test_net')

        with self.assertRaisesRegexp(RuntimeError, 'Network: .*input.*'):
            network.add('c1', ConvLayer(3, 64, 224, 3))

    def test_add_no_prev(self):
        ''' Modifier add no prevs. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 224))

        network.add('c1', ConvLayer(3, 64, 224, 3))
        with self.assertRaisesRegexp(KeyError, 'Network: .*prev.*p1.*'):
            network.add('p1', PoolingLayer(64, 7, 32), prevs='p1')

    def test_add_invalid_type(self):
        ''' Modifier add invalid type. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 224))

        with self.assertRaisesRegexp(TypeError, 'Network: .*Layer.*'):
            network.add('c1', (3, 64, 224, 3))

    def test_add_unmatch_prev(self):
        ''' Modifier add unmatch prevs. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 224))
        network.add('c1', ConvLayer(3, 64, 224, 3))

        with self.assertRaisesRegexp(ValueError,
                                     'Network: .*c1.*p1.*mismatch fmap.*'):
            network.add('p1', PoolingLayer(64, 7, 2))
        self.assertEqual(len(network), 1)
        with self.assertRaisesRegexp(ValueError,
                                     'Network: .*c1.*c2.*mismatch fmap.*'):
            network.add('c2', ConvLayer(64, 128, 220, 3))
        self.assertEqual(len(network), 1)

        with self.assertRaisesRegexp(ValueError, 'Network: .*merge.*c1.*p1.*'):
            network.add('p1', PoolingLayer(32, 7, 32))
        self.assertEqual(len(network), 1)
        with self.assertRaisesRegexp(ValueError, 'Network: .*merge.*c1.*c2.*'):
            network.add('c2', ConvLayer(32, 128, 224, 3))
        self.assertEqual(len(network), 1)

        network.add('c2', ConvLayer(64, 128, 224, 3))

        with self.assertRaisesRegexp(ValueError,
                                     r'Network: .*merge.*c1\s*c2.*p1.*'):
            network.add('p1', PoolingLayer(128, 7, 32), prevs=('c1', 'c2'))
        self.assertEqual(len(network), 2)

    def test_prev_layers(self):
        ''' Get prev_layers. '''
        self.network.add('f2', FCLayer(64, 2000, 7), prevs='p1')
        self.network.add('f3', FCLayer(3000, 1000), prevs=('f1', 'f2'))
        self.network.add('f4', FCLayer(1000, 1000), prevs=('f1', 'f3'))

        prevs, symbol = self.network.prev_layers('f1')
        self.assertTupleEqual(prevs, ('p1', ))
        self.assertEqual(symbol, '|')

        prevs, symbol = self.network.prev_layers('f2')
        self.assertTupleEqual(prevs, ('p1', ))
        self.assertEqual(symbol, '|')
        prevs, symbol = self.network.prev_layers('f3')
        self.assertTupleEqual(prevs, ('f1', 'f2'))
        self.assertEqual(symbol, '|')

        prevs, symbol = self.network.prev_layers('f4')
        self.assertTupleEqual(prevs, ('f1', 'f3'))
        self.assertEqual(symbol, '+')

    def test_prev_layers_first(self):
        ''' Get prev_layers first layer. '''
        self.network.add('c2',
                         ConvLayer(3, 3, 224, 1),
                         prevs=self.network.INPUT_LAYER_KEY)
        self.network.add('c3',
                         ConvLayer(3, 4, 224, 1),
                         prevs=(self.network.INPUT_LAYER_KEY, 'c2'))

        prevs, symbol = self.network.prev_layers('c1')
        self.assertTupleEqual(prevs, (None, ))
        self.assertEqual(symbol, '|')

        prevs, symbol = self.network.prev_layers('c2')
        self.assertTupleEqual(prevs, (None, ))
        self.assertEqual(symbol, '|')

        prevs, symbol = self.network.prev_layers('c3')
        self.assertTupleEqual(prevs, (None, 'c2'))
        self.assertEqual(symbol, '+')

    def test_prev_layers_input(self):
        ''' Get prev_layers input layer. '''
        with self.assertRaisesRegexp(ValueError, 'Network: .*input.*'):
            _ = self.network.prev_layers(self.network.INPUT_LAYER_KEY)

    def test_next_layers(self):
        ''' Get next_layers. '''
        self.network.add('f2', FCLayer(64, 2000, 7), prevs='p1')
        self.network.add('f3', FCLayer(3000, 1000), prevs=('f1', 'f2'))
        self.network.add('f4', FCLayer(1000, 1000), prevs=('f1', 'f3'))

        nexts = self.network.next_layers('p1')
        self.assertTupleEqual(nexts, ('f1', 'f2'))

        nexts = self.network.next_layers('f1')
        self.assertTupleEqual(nexts, ('f3', 'f4'))

        nexts = self.network.next_layers('f2')
        self.assertTupleEqual(nexts, ('f3', ))

        nexts = self.network.next_layers('f3')
        self.assertTupleEqual(nexts, ('f4', ))

    def test_next_layers_last(self):
        ''' Get next_layers first layer. '''
        nexts = self.network.next_layers('f1')
        self.assertTupleEqual(nexts, (None, ))

        self.network.add('f2', FCLayer(64, 2000, 7), prevs='p1')

        nexts = self.network.next_layers('f1')
        self.assertTupleEqual(nexts, (None, ))
        nexts = self.network.next_layers('f2')
        self.assertTupleEqual(nexts, (None, ))

    def test_next_layers_input(self):
        ''' Get next_layers input layer. '''
        nexts = self.network.next_layers(self.network.INPUT_LAYER_KEY)
        self.assertTupleEqual(nexts, ('c1', ))

        self.network.add('c2',
                         ConvLayer(3, 3, 224, 1),
                         prevs=self.network.INPUT_LAYER_KEY)
        self.network.add('c3',
                         ConvLayer(3, 4, 224, 1),
                         prevs=(self.network.INPUT_LAYER_KEY, 'c2'))
        nexts = self.network.next_layers(self.network.INPUT_LAYER_KEY)
        self.assertTupleEqual(nexts, ('c1', 'c2', 'c3'))

    def test_first_layers(self):
        ''' Get first_layers. '''
        firsts = self.network.first_layers()
        self.assertTupleEqual(firsts, ('c1', ))

        self.network.add('c2',
                         ConvLayer(3, 3, 224, 1),
                         prevs=self.network.INPUT_LAYER_KEY)
        self.network.add('c3',
                         ConvLayer(3, 4, 224, 1),
                         prevs=(self.network.INPUT_LAYER_KEY, 'c2'))

        firsts = self.network.first_layers()
        self.assertTupleEqual(firsts, ('c1', 'c2'))
        self.assertIn('c1', firsts)
        self.assertNotIn('c3', firsts)

    def test_last_layers(self):
        ''' Get last_layers. '''
        lasts = self.network.last_layers()
        self.assertTupleEqual(lasts, ('f1', ))

        self.network.add('f2', FCLayer(64, 2000, 7), prevs='p1')

        lasts = self.network.last_layers()
        self.assertTupleEqual(lasts, ('f1', 'f2'))

    def test_contains(self):
        ''' Whether contains. '''
        self.assertIn('c1', self.network)
        self.assertIn('p1', self.network)
        self.assertIn('f1', self.network)
        self.assertNotIn('f2', self.network)

        self.network.add('f2', FCLayer(64, 2000, 7), prevs='p1')
        self.assertIn('f2', self.network)

    def test_len(self):
        ''' Accessor len. '''
        self.assertEqual(len(self.network), 3)

        network = Network('test_net')
        self.assertEqual(len(network), 0)
        network.set_input(InputLayer(3, 224))
        self.assertEqual(len(network), 0)
        network.add('c1', ConvLayer(3, 4, 224, 1))
        self.assertEqual(len(network), 1)

        self.network.add('f2', FCLayer(64, 2000, 7), prevs='p1')
        self.assertEqual(len(self.network), 4)
        self.network.add('f3', FCLayer(3000, 1000), prevs=('f1', 'f2'))
        self.assertEqual(len(self.network), 5)
        self.network.add('f4', FCLayer(1000, 1000), prevs=('f1', 'f3'))
        self.assertEqual(len(self.network), 6)

    def test_iter(self):
        ''' Accessor iter. '''
        num = 0
        for layer in self.network:
            self.assertIn(layer, self.network)
            self.assertIsInstance(self.network[layer], Layer)
            num += 1
        self.assertEqual(len(self.network), num)

        network = Network('test_net')
        network.set_input(InputLayer(3, 224))
        with self.assertRaises(StopIteration):
            _ = next(iter(network))

    def test_getitem(self):
        ''' Accessor getitem. '''
        self.assertIsInstance(self.network['c1'], ConvLayer)
        self.assertIsInstance(self.network['p1'], PoolingLayer)
        self.assertIsInstance(self.network['f1'], FCLayer)

    def test_getitem_error(self):
        ''' Accessor getitem. '''
        with self.assertRaisesRegexp(KeyError, 'Network: .*c2.*'):
            _ = self.network['c2']

    def test_str(self):
        ''' Accessor str. '''
        string = str(self.network)
        for layer in self.network:
            self.assertIn(layer, string)
Exemple #22
0
 def test_set_input_duplicate(self):
     ''' Modifier set_input duplicate. '''
     network = Network('test_net')
     network.set_input(InputLayer(3, 24))
     with self.assertRaisesRegexp(KeyError, 'Network: .*input.*'):
         network.set_input(InputLayer(3, 24))
class TestNNDataflowScheme(unittest.TestCase):
    ''' Tests for NNDataflowScheme. '''

    def setUp(self):
        self.network = Network('test_net')
        self.network.set_input(InputLayer(3, 224))
        self.network.add('c1', ConvLayer(3, 64, 224, 3))
        self.network.add('p1', PoolingLayer(64, 7, 32), prevs='c1')
        self.network.add('p2', PoolingLayer(64, 7, 32), prevs='c1')
        self.network.add('f1', FCLayer(64, 1000, 7), prevs=['p1', 'p2'])

        self.batch_size = 4

        self.input_layout = partition.get_ofmap_layout(
            self.network.input_layer(), self.batch_size,
            PartitionScheme(order=range(pe.NUM), pdims=[(1, 1)] * pe.NUM),
            NodeRegion(origin=PhyDim2(0, 0), dim=PhyDim2(2, 1),
                       type=NodeRegion.DATA))

        self.c1res = SchedulingResult(
            dict_loop=OrderedDict([('cost', 1.), ('time', 2.), ('ops', 4.),
                                   ('access', [[7, 8, 9]] * me.NUM),
                                  ]),
            dict_part=OrderedDict([('cost', 0.5), ('total_nhops', [4, 5, 6]),
                                   ('num_nodes', 4),
                                  ]),
            ofmap_layout=partition.get_ofmap_layout(
                self.network['c1'], self.batch_size,
                PartitionScheme(order=range(pe.NUM), pdims=[(1, 1)] * pe.NUM),
                NodeRegion(origin=PhyDim2(0, 0), dim=PhyDim2(1, 2),
                           type=NodeRegion.DATA)))

        self.pres = SchedulingResult(
            dict_loop=OrderedDict([('cost', 0.1), ('time', 0.05), ('ops', 0.1),
                                   ('access', [[.7, .8, .9]] * me.NUM),
                                  ]),
            dict_part=OrderedDict([('cost', 0.5), ('total_nhops', [.4, .5, .6]),
                                   ('num_nodes', 2),
                                  ]),
            ofmap_layout=partition.get_ofmap_layout(
                self.network['p1'], self.batch_size,
                PartitionScheme(order=range(pe.NUM), pdims=[(1, 1)] * pe.NUM),
                NodeRegion(origin=PhyDim2(0, 0), dim=PhyDim2(1, 2),
                           type=NodeRegion.DATA)))

        self.dtfl = NNDataflowScheme(self.network, self.input_layout)
        self.dtfl['c1'] = self.c1res
        self.dtfl['p1'] = self.pres
        self.dtfl['p2'] = self.pres

    def test_init(self):
        ''' Initial. '''
        df = NNDataflowScheme(self.network, self.input_layout)

        self.assertEqual(df.network, self.network)
        self.assertEqual(df.input_layout, self.input_layout)

        self.assertEqual(df.total_cost, 0)
        self.assertEqual(df.total_time, 0)
        self.assertFalse(df.res_dict)

        self.assertFalse(df)
        self.assertEqual(df.total_ops, 0)
        self.assertSequenceEqual(df.total_accesses, [0] * me.NUM)
        self.assertEqual(df.total_noc_hops, 0)

    def test_init_invalid_network(self):
        ''' Invalid network. '''
        with self.assertRaisesRegexp(TypeError,
                                     'NNDataflowScheme: .*network*'):
            _ = NNDataflowScheme(self.network['c1'], self.input_layout)

    def test_init_invalid_input_layout(self):
        ''' Invalid input_layout. '''
        with self.assertRaisesRegexp(TypeError,
                                     'NNDataflowScheme: .*input_layout*'):
            _ = NNDataflowScheme(self.network, self.input_layout.frmap)

    def test_setgetitem(self):
        ''' __set/getitem__. '''
        df = NNDataflowScheme(self.network, self.input_layout)

        df['c1'] = self.c1res
        self.assertEqual(df['c1'], self.c1res)

    def test_getitem_not_in(self):
        ''' __getitem__ not in. '''
        df = NNDataflowScheme(self.network, self.input_layout)

        with self.assertRaises(KeyError):
            _ = df['c1']

    def test_setitem_not_in_network(self):
        ''' __setitem__ not in network. '''
        df = NNDataflowScheme(self.network, self.input_layout)

        with self.assertRaisesRegexp(KeyError, 'NNDataflowScheme: .*cc.*'):
            df['cc'] = self.c1res

    def test_setitem_invalid_value(self):
        ''' __setitem__ invalid value. '''
        df = NNDataflowScheme(self.network, self.input_layout)

        with self.assertRaisesRegexp(TypeError,
                                     'NNDataflowScheme: .*SchedulingResult*'):
            df['c1'] = self.c1res.dict_loop

    def test_setitem_already_exists(self):
        ''' __setitem__ already exists. '''
        df = NNDataflowScheme(self.network, self.input_layout)
        df['c1'] = self.c1res

        with self.assertRaisesRegexp(KeyError, 'NNDataflowScheme: .*c1*'):
            df['c1'] = self.c1res

    def test_setitem_prev_not_in(self):
        ''' __setitem__ already exists. '''
        df = NNDataflowScheme(self.network, self.input_layout)

        with self.assertRaisesRegexp(KeyError, 'NNDataflowScheme: .*p1*'):
            df['p1'] = self.pres

    def test_delitem(self):
        ''' __delitem__. '''
        df = NNDataflowScheme(self.network, self.input_layout)
        df['c1'] = self.c1res

        with self.assertRaisesRegexp(KeyError, 'NNDataflowScheme: .*'):
            del df['c1']

    def test_iter_len(self):
        ''' __iter__ and __len__. '''
        self.assertEqual(len(self.dtfl), 3)

        lst = [l for l in self.dtfl]
        self.assertIn('c1', lst)
        self.assertIn('p1', lst)
        self.assertIn('p2', lst)
        self.assertNotIn('f1', lst)

    def test_copy(self):
        ''' copy. '''
        df = self.dtfl
        df2 = df.copy()

        self.assertAlmostEqual(df.total_cost, df2.total_cost)
        self.assertAlmostEqual(df.total_time, df2.total_time)
        self.assertDictEqual(df.res_dict, df2.res_dict)

        # Shallow copy.
        for layer_name in df:
            self.assertEqual(id(df[layer_name]), id(df2[layer_name]))

    def test_properties(self):
        ''' Property accessors. '''
        self.assertAlmostEqual(self.dtfl.total_cost, 1.5 + 0.6 * 2)
        self.assertAlmostEqual(self.dtfl.total_time, 2 + 0.05 * 2)

        self.assertAlmostEqual(self.dtfl.total_ops, 4 + 0.1 * 2)
        for a in self.dtfl.total_accesses:
            self.assertAlmostEqual(a, (7 + 8 + 9) + (.7 + .8 + .9) * 2)
        self.assertAlmostEqual(self.dtfl.total_noc_hops,
                               (4 + 5 + 6) + (.4 + .5 + .6) * 2)
        self.assertAlmostEqual(self.dtfl.total_node_time, 2 * 4 + 0.05 * 2 * 2)

    def test_stats_active_node_pes(self):
        ''' Per-layer stats: active node PEs. '''
        stats = self.dtfl.perlayer_stats('active_node_pes')
        self.assertEqual(len(stats), len(self.dtfl))
        self.assertAlmostEqual(stats['c1'], 0.5)
        self.assertAlmostEqual(stats['p1'], 1)
        self.assertAlmostEqual(stats['p2'], 1)

    def test_stats_total_dram_bw(self):
        ''' Per-layer stats: total DRAM bandwidth. '''
        stats = self.dtfl.perlayer_stats('total_dram_bandwidth')
        self.assertEqual(len(stats), len(self.dtfl))
        self.assertAlmostEqual(stats['c1'], (7 + 8 + 9) / 2.)
        self.assertAlmostEqual(stats['p1'], (.7 + .8 + .9) / 0.05)
        self.assertAlmostEqual(stats['p2'], (.7 + .8 + .9) / 0.05)

    def test_stats_not_supported(self):
        ''' Per-layer stats: not supported. '''
        with self.assertRaisesRegexp(AttributeError,
                                     'NNDataflowScheme: .*not_supported.*'):
            _ = self.dtfl.perlayer_stats('not_supported')
Exemple #24
0
Copyright (C) 2016-2020 by Tsinghua University and The Board of Trustees of
Stanford University

This program is free software: you can redistribute it and/or modify it under
the terms of the Modified BSD-3 License as published by the Open Source
Initiative.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the BSD-3 License for more details.

You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""

from nn_dataflow.core import Network
from nn_dataflow.core import InputLayer, FCLayer
'''
MLP-S

PRIME, 2016
'''

NN = Network('MLP-S')

NN.set_input_layer(InputLayer(784, 1))

NN.add('fc1', FCLayer(784, 500))
NN.add('fc2', FCLayer(500, 250))
NN.add('fc3', FCLayer(250, 10))
Exemple #25
0
PARTICULAR PURPOSE. See the BSD-3 License for more details.

You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""

from nn_dataflow.core import Network
from nn_dataflow.core import InputLayer, ConvLayer, FCLayer, \
        PoolingLayer, EltwiseLayer
'''
ResNet-152

He, Zhang, Ren, and Sun, 2015
'''

NN = Network('ResNet')

NN.set_input_layer(InputLayer(3, 224))

NN.add('conv1', ConvLayer(3, 64, 112, 7, 2))
NN.add('pool1', PoolingLayer(64, 56, 3, 2))

RES_PREV = 'pool1'

for i in range(3):
    NN.add('conv2_{}_a'.format(i), ConvLayer(64 if i == 0 else 256, 64, 56, 1))
    NN.add('conv2_{}_b'.format(i), ConvLayer(64, 64, 56, 3))
    NN.add('conv2_{}_c'.format(i), ConvLayer(64, 256, 56, 1))

    # With residual shortcut.
    if i == 0:
Exemple #26
0
You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""

from nn_dataflow.core import Network
from nn_dataflow.core import InputLayer, EltwiseLayer

from nn_dataflow.nns import add_lstm_cell
'''
LSTM from GNMT.

Sutskever, Vinyals, Le, Google, NIPS 2014
'''

NN = Network('GNMT')

NN.set_input_layer(InputLayer(1000, 1))

NL = 4

# Word embedding is a simple lookup.
# Exclude or ignore embedding processing.
WE = NN.INPUT_LAYER_KEY

# layered LSTM.
X = WE
for l in range(NL):
    cell = 'cell_l{}'.format(l)
    C, H = add_lstm_cell(NN, cell, 1000, X)
    X = H
Exemple #27
0
TETRIS paper ("TETRIS: Scalable and Efficient Neural Network Acceleration with
3D Memory", in ASPLOS'17. April, 2017), and that you send us a citation of your
work.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the BSD-3 License for more details.

You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""

from nn_dataflow.core import Network
from nn_dataflow.core import InputLayer, FCLayer

'''
MLP-M

PRIME, 2016
'''

NN = Network('MLP-M')

NN.set_input(InputLayer(784, 1))

NN.add('fc1', FCLayer(784, 1000))
NN.add('fc2', FCLayer(1000, 500))
NN.add('fc3', FCLayer(500, 250))
NN.add('fc4', FCLayer(250, 10))

Exemple #28
0
    def test_add_unmatch_prev(self):
        ''' Modifier add unmatch prevs. '''
        network = Network('test_net')
        network.set_input(InputLayer(3, 224))
        network.add('c1', ConvLayer(3, 64, 224, 3))

        with self.assertRaisesRegexp(ValueError,
                                     'Network: .*c1.*p1.*mismatch fmap.*'):
            network.add('p1', PoolingLayer(64, 7, 2))
        self.assertEqual(len(network), 1)
        with self.assertRaisesRegexp(ValueError,
                                     'Network: .*c1.*c2.*mismatch fmap.*'):
            network.add('c2', ConvLayer(64, 128, 220, 3))
        self.assertEqual(len(network), 1)

        with self.assertRaisesRegexp(ValueError, 'Network: .*merge.*c1.*p1.*'):
            network.add('p1', PoolingLayer(32, 7, 32))
        self.assertEqual(len(network), 1)
        with self.assertRaisesRegexp(ValueError, 'Network: .*merge.*c1.*c2.*'):
            network.add('c2', ConvLayer(32, 128, 224, 3))
        self.assertEqual(len(network), 1)

        network.add('c2', ConvLayer(64, 128, 224, 3))

        with self.assertRaisesRegexp(ValueError,
                                     r'Network: .*merge.*c1\s*c2.*p1.*'):
            network.add('p1', PoolingLayer(128, 7, 32), prevs=('c1', 'c2'))
        self.assertEqual(len(network), 2)
Exemple #29
0
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the BSD-3 License for more details.

You should have received a copy of the Modified BSD-3 License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>.
"""

from nn_dataflow.core import Network
from nn_dataflow.core import InputLayer, ConvLayer, FCLayer, PoolingLayer
'''
VGGNet-16

Simonyan and Zisserman, 2014
'''

NN = Network('VGG')

NN.set_input_layer(InputLayer(3, 224))

NN.add('conv1', ConvLayer(3, 64, 224, 3))
NN.add('conv2', ConvLayer(64, 64, 224, 3))
NN.add('pool1', PoolingLayer(64, 112, 2))

NN.add('conv3', ConvLayer(64, 128, 112, 3))
NN.add('conv4', ConvLayer(128, 128, 112, 3))
NN.add('pool2', PoolingLayer(128, 56, 2))

NN.add('conv5', ConvLayer(128, 256, 56, 3))
NN.add('conv6', ConvLayer(256, 256, 56, 3))
NN.add('conv7', ConvLayer(256, 256, 56, 3))
NN.add('pool3', PoolingLayer(256, 28, 2))
Exemple #30
0
class TestPipelineSegmentTiming(TestPipelineFixture):
    ''' Tests for PipelineSegmentTiming. '''

    def setUp(self):
        super(TestPipelineSegmentTiming, self).setUp()

        self.net1 = self.net['net1']

        self.net4 = self.net['net4']

        self.netlr = Network('net1')
        self.netlr.set_input_layer(InputLayer(10, 1))
        self.netlr.add('0p1', PoolingLayer(10, 1, 1))
        self.netlr.add('0p2', PoolingLayer(10, 1, 1))
        self.netlr.add('0p3', PoolingLayer(10, 1, 1))
        self.netlr.add('1', FCLayer(10, 20))

    def test_valid_args(self):
        ''' Valid arguments. '''
        timing = PipelineSegmentTiming(self.net1, 3)
        self.assertIs(timing.network, self.net1)
        self.assertEqual(timing.seg_idx, 3)

    def test_invalid_network(self):
        ''' Invalid network. '''
        with self.assertRaisesRegex(TypeError,
                                    'PipelineSegmentTiming: .*network.*'):
            _ = PipelineSegmentTiming(self.net1.input_layer(), 3)

    def test_add(self):
        ''' add(). '''
        # No fused.

        timing = PipelineSegmentTiming(self.net1, 3)

        timing.add('0', self._make_sched_res((3, 0, 0), 123,
                                             top_to=3, top_tb=2))
        self.assertTupleEqual(timing.last_sched_seq, (3, 0, 0))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 3)

        timing.add('1', self._make_sched_res((3, 1, 0), 141,
                                             top_ti=3, top_tb=2))
        self.assertTupleEqual(timing.last_sched_seq, (3, 1, 0))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 1)

        timing.add('1p', self._make_sched_res((3, 1, 1), 12,
                                              top_ti=3, top_tb=2))
        self.assertTupleEqual(timing.last_sched_seq, (3, 1, 1))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 1)

        self.assertEqual(timing.bat_ngrp, 2)
        self.assertEqual(len(timing.timing_list), 2)
        self.assertEqual(len(timing.timing_list[0]), 1)
        self.assertEqual(len(timing.timing_list[1]), 2)

        # Fused.

        timing = PipelineSegmentTiming(self.net1, 3)

        timing.add('0', self._make_sched_res((3, 0, 0), 123,
                                             top_tb=2))
        self.assertTupleEqual(timing.last_sched_seq, (3, 0, 0))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 1)

        timing.add('1', self._make_sched_res((3, 1, 0), 141,
                                             top_to=3, top_tb=2))
        self.assertTupleEqual(timing.last_sched_seq, (3, 1, 0))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 3)

        timing.add('1p', self._make_sched_res((3, 1, 1), 12,
                                              top_to=3, top_tb=2))
        self.assertTupleEqual(timing.last_sched_seq, (3, 1, 1))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 3)

        # Unmatched BAT group number.

        self.assertEqual(timing.bat_ngrp, 2)
        timing.add('2', self._make_sched_res((3, 2, 0), 123, top_tb=4))
        self.assertEqual(timing.bat_ngrp, 1)

    def test_add_all_lr(self):
        ''' add() all LocalRegionLayer. '''
        timing = PipelineSegmentTiming(self.netlr, 2)

        timing.add('0p1', self._make_sched_res((2, 0, 0), 40, top_to=4))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 4)
        timing.add('0p2', self._make_sched_res((2, 0, 1), 80, top_to=4))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 4)
        timing.add('0p3', self._make_sched_res((2, 0, 2), 60, top_to=4))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 4)
        timing.add('1', self._make_sched_res((2, 1, 0), 800, top_to=4))
        self.assertEqual(timing.timing_list[-1][-1].ngrp, 4)

    def test_add_invalid_sched_seq(self):
        ''' add(), invalid sched seq. '''
        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 123))

        with self.assertRaisesRegex(ValueError,
                                    'PipelineSegmentTiming: .*belong to.*'):
            timing.add('1', self._make_sched_res((2, 1, 0), 123))

        with self.assertRaisesRegex(ValueError,
                                    'PipelineSegmentTiming: .*follow.*'):
            timing.add('1p', self._make_sched_res((3, 1, 1), 123))

    def test_add_already_in(self):
        ''' add(), layer already in. '''
        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 123))
        with self.assertRaisesRegex(ValueError,
                                    'PipelineSegmentTiming: .*layer 0.*'):
            timing.add('0', self._make_sched_res((3, 1, 0), 123))

    def test_time_bat_ngrp(self):
        ''' time and critical_time bat_ngrp. '''
        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 120, top_tb=4))
        timing.add('1', self._make_sched_res((3, 1, 0), 130, top_tb=4))
        timing.add('1p', self._make_sched_res((3, 1, 1), 20, top_tb=4))
        timing.add('2', self._make_sched_res((3, 2, 0), 136, top_tb=4))
        self.assertEqual(timing.critical_time, 150)
        self.assertEqual(timing.time, 120 // 4 + 130 + 20 + 136 // 4)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((120 + 130 + 20 + 136) / 3.) - 1)

        # Unmatched BAT group number.
        timing.add('3', self._make_sched_res((3, 3, 0), 100, top_tb=2))
        self.assertEqual(timing.time, 120 + 130 + 20 + 136 + 100)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time
                               / ((120 + 130 + 20 + 136 + 100) / 4.) - 1)

    def test_time_ifm_ofm_ngrp(self):
        ''' time and critical_time ifm_ngrp and ofm_ngrp. '''

        # Single-group wait, first critical.

        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 120,
                                             top_to=3, top_tb=2))
        timing.add('1', self._make_sched_res((3, 1, 0), 90,
                                             top_ti=3, top_tb=2))
        self.assertEqual(timing.critical_time, 120)
        # Layer 0 is critical. Layer 0 last BAT group starts at 120 - 120 // 2.
        # Layer 1 last BAT group starts 120 // 2 // 3 later, which takes 90 //
        # 2.
        self.assertEqual(timing.time,
                         120 - 120 // 2 + 120 // 2 // 3 + 90 // 2)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((120 + 90) / 2.) - 1)

        # Single-group wait, second critical.

        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 120,
                                             top_to=3, top_tb=2))
        timing.add('1', self._make_sched_res((3, 1, 0), 150,
                                             top_ti=3, top_tb=2))
        self.assertEqual(timing.critical_time, 150)
        # Layer 1 is critical. Layer 1 first BAT group starts at 120 // 2 // 3,
        # and takes 150 for all its BAT groups.
        self.assertEqual(timing.time, 120 // 2 // 3 + 150)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((120 + 150) / 2.) - 1)

        # All-group wait, first critical.

        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 120,
                                             top_to=3, top_tb=2))
        timing.add('1', self._make_sched_res((3, 1, 0), 90,
                                             top_to=3, top_tb=2))
        self.assertEqual(timing.critical_time, 120)
        self.assertEqual(timing.time, 120 + 90 // 2)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((120 + 90) / 2.) - 1)

        # All-group wait, second critical.

        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 120,
                                             top_ti=3, top_tb=2))
        timing.add('1', self._make_sched_res((3, 1, 0), 150,
                                             top_ti=3, top_tb=2))
        self.assertEqual(timing.critical_time, 150)
        self.assertEqual(timing.time, 120 // 2 + 150)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((120 + 150) / 2.) - 1)

    def test_time_linear(self):
        ''' time and critical_time linear. '''
        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 120,
                                             top_ti=3, top_tb=2))
        timing.add('1', self._make_sched_res((3, 1, 0), 129,
                                             top_to=3, top_tb=2))
        timing.add('1p', self._make_sched_res((3, 1, 1), 21,
                                              top_to=3, top_tb=2))
        timing.add('2', self._make_sched_res((3, 2, 0), 138,
                                             top_ti=3, top_tb=2))
        self.assertEqual(timing.critical_time, 150)
        # Layer 1 is critical. Layer 1+1p first BAT group starts at 120 // 2,
        # and last BAT group starts at 150 // 2 later. Layer 2 last BAT group
        # starts 150 // 2 // 3 later, and takes 138 // 2.
        self.assertEqual(timing.time,
                         120 // 2 + 150 // 2 + 150 // 2 // 3 + 138 // 2)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((120 + 129 + 21 + 138) / 3.) - 1)

    def test_time_branch(self):
        ''' time and critical_time branch. '''

        # Single-group wait.

        timing = PipelineSegmentTiming(self.net4, 3)
        timing.add('6', self._make_sched_res((3, 0, 0), 120,
                                             top_ti=3, top_tb=2))
        timing.add('7', self._make_sched_res((3, 1, 0), 150,
                                             top_to=3, top_tb=2))
        timing.add('8', self._make_sched_res((3, 2, 0), 144,
                                             top_ti=3, top_tb=2))
        timing.add('9', self._make_sched_res((3, 3, 0), 168,
                                             top_ti=3, top_tb=2))
        self.assertEqual(timing.critical_time, 168)
        # Layer 9 is critical. Layer 7 first BAT group starts at 120 // 2.
        # Layer 8 and 9 first BAT group starts at 150 // 2 // 3 later, and all
        # groups of layer 9 take 168.
        self.assertEqual(timing.time,
                         120 // 2 + 150 // 2 // 3 + 168)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((120 + 150 + 144 + 168) / 4.) - 1)

        # All-group wait.

        timing = PipelineSegmentTiming(self.net4, 3)
        timing.add('6', self._make_sched_res((3, 0, 0), 120, top_tb=2))
        timing.add('7', self._make_sched_res((3, 1, 0), 150, top_tb=2))
        timing.add('8', self._make_sched_res((3, 2, 0), 144, top_tb=2))
        timing.add('9', self._make_sched_res((3, 3, 0), 132, top_tb=2))
        self.assertEqual(timing.critical_time, 150)
        # Layer 7 is critical. Layer 7 first BAT group starts at 120 // 2, and
        # layer 7 last BAT group ends at 150 later, at which time layer 8 and 9
        # last BAT group starts, and takes 144 // 2.
        self.assertEqual(timing.time, 120 // 2 + 150 + 144 // 2)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((120 + 150 + 144 + 132) / 4.) - 1)

    def test_time_all_lr(self):
        ''' time and critical_time all LocalRegionLayer. '''
        timing = PipelineSegmentTiming(self.netlr, 2)
        timing.add('0p1', self._make_sched_res((2, 0, 0), 40,
                                               top_to=5, top_tb=2))
        timing.add('0p2', self._make_sched_res((2, 0, 1), 80,
                                               top_to=5, top_tb=2))
        timing.add('0p3', self._make_sched_res((2, 0, 2), 60,
                                               top_to=5, top_tb=2))
        timing.add('1', self._make_sched_res((2, 1, 0), 800,
                                             top_ti=5, top_tb=2))
        self.assertEqual(timing.critical_time, 800)
        # Layer 1 is critical. Layer 1 first BAT group starts at (40 + 80 + 60)
        # // 2 // 5, and takes 800.
        self.assertEqual(timing.time, (40 + 80 + 60) // 2 // 5 + 800)
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / ((40 + 80 + 60 + 800) / 2.) - 1)

    def test_time_single_spatial(self):
        ''' time and critical_time for single-spatial segment. '''

        for net_name in self.net:
            if not net_name.startswith('net'):
                continue
            net = self.net[net_name]

            for seg in self._gen_all_segment(net, temporal=True):
                if not seg.valid:
                    continue
                self.assertEqual(len(seg), 1)

                timing = PipelineSegmentTiming(net, 0)
                for idx, layer in enumerate(seg[0]):
                    timing.add(layer,
                               self._make_sched_res((0, 0, idx),
                                                    (40 + idx * 7 % 3) * 16,
                                                    top_to=4, top_ti=4,
                                                    top_tb=4))

                self.assertEqual(timing.critical_time, timing.time)
                self.assertAlmostEqual(timing.time_overhead, 0.)

    def test_time_dram_time(self):
        ''' time and critical_time dominated by DRAM time. '''
        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 120, dram_time=100,
                                             top_ti=3, top_tb=4))
        timing.add('1', self._make_sched_res((3, 1, 0), 130, dram_time=140,
                                             top_to=3, top_tb=4))
        timing.add('1p', self._make_sched_res((3, 1, 1), 20, dram_time=10,
                                              top_to=3, top_tb=4))
        timing.add('2', self._make_sched_res((3, 2, 0), 138, dram_time=100,
                                             top_ti=3, top_tb=4))
        self.assertEqual(timing.critical_time, 160)
        self.assertEqual(timing.time, 100 + 140 + 10 + 100)
        self.assertEqual(timing.dram_time, timing.time)
        self.assertLess(timing.node_time, timing.time)

    def test_time_overhead(self):
        ''' time_overhead. '''
        timing = PipelineSegmentTiming(self.net1, 3)
        timing.add('0', self._make_sched_res((3, 0, 0), 120, num_nodes=4,
                                             top_ti=3, top_tb=4))
        timing.add('1', self._make_sched_res((3, 1, 0), 130, num_nodes=6,
                                             top_to=3, top_tb=4))
        timing.add('1p', self._make_sched_res((3, 1, 1), 20, num_nodes=6,
                                              top_to=3, top_tb=4))
        timing.add('2', self._make_sched_res((3, 2, 0), 138, num_nodes=3,
                                             top_ti=3, top_tb=4))

        time_indv = 120 * 4 / 13. + (130 + 20) * 6 / 13. + 138 * 3 / 13.
        self.assertAlmostEqual(timing.time_overhead,
                               timing.time / time_indv - 1)