prepare_training_data(args.chime_dir, args.data_dir) flists = dict() for stage in ['tr', 'dt']: with open( os.path.join(args.data_dir, 'flist_{}.json'.format(stage))) as fid: flists[stage] = json.load(fid) log.debug('Loaded file lists') # Prepare model if args.model_type == 'BLSTM': model = BLSTMMaskEstimator() model_save_dir = os.path.join(args.data_dir, 'BLSTM_model') mkdir_p(model_save_dir) elif args.model_type == 'FW': model = SimpleFWMaskEstimator() model_save_dir = os.path.join(args.data_dir, 'FW_model') mkdir_p(model_save_dir) else: raise ValueError('Unknown model type. Possible are "BLSTM" and "FW"') if args.gpu >= 0: cuda.get_device(args.gpu).use() model.to_gpu() xp = np if args.gpu < 0 else cuda.cupy log.debug('Prepared model') # Setup optimizer optimizer = optimizers.Adam() optimizer.setup(model)