Exemple #1
0
    def init_weights(self, initial_weights, silent_mode):
        if initial_weights == "layers":
            for k in range(1, self.size):
                if not (self.cfg[k].type == "pooling"):
                    layer = self.cfg[k]
                    wk, bk = self.weights[k]
                    assert (self.cfg[k].initW != None
                            and self.cfg[k].initB != None)
                    wk.ravel()[:] = self.cfg[k].initW * nn.randn(
                        layer.num_weights - layer.num_filters)
                    if type(self.cfg[k].initB) == str:
                        bk[:] = 1.0 * int(self.cfg[k].initB) * nn.ones(
                            layer.num_filters)
                    else:
                        bk[:] = self.cfg[k].initB * nn.randn(layer.num_filters)
            if not silent_mode: print "Initialized Using Layers"
        elif (type(initial_weights) == gp.garray
              or type(initial_weights) == np.ndarray):
            self.weights.mem[:] = initial_weights
            if not silent_mode: print "Initialized Using initial_weights"
        elif type(initial_weights) == float:
            self.weights.randn(initial_weights)
        elif initial_weights != None:
            raise Exception("Wrong Initialization!")
        else:
            print "Continue ..."

        if self.cfg.want_tied:
            for hidden_pairs in self.cfg.tied_list:
                self.weights.make_tied_copy(*hidden_pairs)
Exemple #2
0
    def gradient_check(self):

        backend_backup = nn.backend
        nn.set_backend("numpy")
        assert self.cfg.want_dropout == False
        # assert self.cfg[-1].activation==nn.softmax
        assert nn.backend == nn.NumpyBackend

        if self.cfg[0].type=="convolution": x=nn.randn((2,self.cfg[0].shape[0],self.cfg[0].shape[1],self.cfg[0].shape[2]))
        else: x=nn.randn((2,self.cfg[0].shape))

        if self.cfg[self.size-1].type == "dense": 
            t=nn.zeros((2,self.cfg[-1].shape))
            t[0,np.random.randint(self.cfg[-1].shape)] = 1; t[1,np.random.randint(self.cfg[-1].shape)] = 1; #since we are using a trick in cross-entropy cost function in order not to get nan, t values should be either 0 or 1.
            # row_sums = t.sum(axis=1);t = t / row_sums[:, np.newaxis] #for softmax gradient checking, rows should sum up to one.
        else: 
            t=nn.randn((2,self.cfg[-1].shape[0],self.cfg[-1].shape[1],self.cfg[-1].shape[2]))
            # print self.cfg[-1].shape

        epsilon=.00001
        for k in range(0,self.size):
            if self.cfg[k].type == "dense":
                self.weights.randn(.01)
                self.compute_grad(x,t) #is it necessary to have this inside the loop? don't think so. 

                if k==0: continue
                wk,bk=self.weights[k]
                dwk,dbk=self.dweights[k]
                f=self.feedforward(x,t)
                wk[0,0]+=epsilon
                f_new=self.feedforward(x,t)
                df=(f_new-f)
                print k,df/epsilon/dwk[0,0]
                f=self.feedforward(x,t)
                bk[0,0]+=epsilon
                f_new=self.feedforward(x,t)
                df=(f_new-f)
                print k,df/epsilon/dbk[0,0]
            if self.cfg[k].type in ("convolution","deconvolution"):
                self.weights.randn(.01)
                self.compute_grad(x,t)

                if k==0: continue
                wk,bk=self.weights[k]
                dwk,dbk=self.dweights[k]
                f=self.feedforward(x,t)
                # print wk.shape
                wk[0,0,2,0]+=epsilon
                f_new=self.feedforward(x,t)
                df=(f_new-f)
                # print f_new,f
                print k,df/epsilon/dwk[0,0,2,0]
                f=self.feedforward(x,t)
                bk[0,0]+=epsilon
                f_new=self.feedforward(x,t)
                df=(f_new-f)
                print k,df/epsilon/dbk[0,0]

        nn.backend = backend_backup          
Exemple #3
0
 def gradient_check_numpy_ae(self,X,T):
     self.weights.mem[:]=.01*nn.randn(self.cfg.num_parameters)
     self.compute_grad(X,T,0,2)
     epsilon=.00001
     for k in self.cfg.index_dense:
         wk,bk=self.weights[k]
         dwk,dbk=self.dweights[k]
         f=self.compute_cost(x,t)
         wk[0,0]+=epsilon
         f_new=self.compute_cost(x,t)
         df=(f_new-f)
         print k,df/epsilon/dwk[0,0]
         f=self.compute_cost(x,t)
         bk[0]+=epsilon
         f_new=self.compute_cost(x,t)
         df=(f_new-f)
         print k,df/epsilon/dbk[0]
     for k in self.cfg.index_convolution:
         if k==0: continue
         wk,bk=self.weights[k]
         dwk,dbk=self.dweights[k]
         f=self.compute_cost(x,t)
         wk[0,1,2,3]+=epsilon
         f_new=self.compute_cost(x,t)
         df=(f_new-f)
         print k,df/epsilon/dwk[0,1,2,3]
         f=self.compute_cost(x,t)
         bk[0]+=epsilon
         f_new=self.compute_cost(x,t)
         df=(f_new-f)
         print k,df/epsilon/dbk[0]
Exemple #4
0
    def gradient_check(self):

        # assert self.cfg[-1].activation==nn.softmax
        assert nn.backend == nn.NumpyBackend

        if 0 in self.cfg.index_convolution: x=nn.randn((self.cfg[0].shape[0],self.cfg[0].shape[1],self.cfg[0].shape[2],2))
        else: x=nn.randn((2,self.cfg[0].shape))

        if self.size-1 in self.cfg.index_dense: 
            t=nn.randn((2,self.cfg[-1].shape))
            row_sums = t.sum(axis=1);t = t / row_sums[:, np.newaxis] #for softmax gradient checking, rows should sum up to one.
        else: t=nn.randn((self.cfg[-1].shape[0],self.cfg[-1].shape[1],self.cfg[-1].shape[2],2))

        self.weights.mem[:]=.01*nn.randn(self.cfg.num_parameters)
        self.compute_grad(x,t)
        epsilon=.00001
        for k in self.cfg.index_dense:
            if k==0: continue
            wk,bk=self.weights[k]
            dwk,dbk=self.dweights[k]
            f=self.compute_cost(x,t)
            wk[0,0]+=epsilon
            f_new=self.compute_cost(x,t)
            df=(f_new-f)
            print k,df/epsilon/dwk[0,0]
            f=self.compute_cost(x,t)
            bk[0]+=epsilon
            f_new=self.compute_cost(x,t)
            df=(f_new-f)
            print k,df/epsilon/dbk[0]
        for k in self.cfg.index_convolution:
            if k==0: continue
            wk,bk=self.weights[k]
            dwk,dbk=self.dweights[k]
            f=self.compute_cost(x,t)
            wk[0,1,2,0]+=epsilon
            f_new=self.compute_cost(x,t)
            df=(f_new-f)
            print k,df/epsilon/dwk[0,1,2,0]
            f=self.compute_cost(x,t)
            bk[0]+=epsilon
            f_new=self.compute_cost(x,t)
            df=(f_new-f)
            print k,df/epsilon/dbk[0]
Exemple #5
0
    def init_weights(self,initial_weights,silent_mode):
        if initial_weights == "layers": 
            for k in range(1,self.size):
                if not(k in self.cfg.index_pooling):
                    layer = self.cfg[k]
                    wk,bk = self.weights[k]
                    assert (self.cfg[k].initW != None and self.cfg[k].initB != None)
                    wk.ravel()[:] = self.cfg[k].initW * nn.randn(layer.num_weights-layer.num_filters)
                    if self.cfg[k].initB == "one":
                        bk[:] = nn.ones(layer.num_filters)
                    else:
                        bk[:] = self.cfg[k].initB * nn.randn(layer.num_filters)             
            if not silent_mode: print "Initialized Using Layers"        
        elif (type(initial_weights) == gp.garray or type(initial_weights) == np.ndarray): 
            self.weights.mem[:] = initial_weights
            if not silent_mode: print "Initialized Using initial_weights"
        elif initial_weights != None: raise Exception("Wrong Initialization!")
        else: print "Continue ..."

        if self.cfg.want_tied: 
            for hidden_pairs in self.cfg.tied_list:  self.weights.make_tied_copy(*hidden_pairs)
Exemple #6
0
    def visualize(self,dp,visual_params):

        w1,b1 = self.weights[1]
        w2,b2 = self.weights[-1]

        if visual_params['save']:
            if self.cfg.learning == "disc":
                num_filters = w1.shape[0]
                nn.show_images(w1,(4,num_filters/4))
            if self.cfg.arch == "dense" and self.cfg.learning == "auto":
                # plt.figure(num=None, figsize=(30,90), dpi=80, facecolor='w', edgecolor='k')    
                size=(10,20)        
                if self.cfg.dataset == "mnist":
                    # print size, w2.shape
                    nn.show_images(w2[:size[0]*size[1]],(size[0],size[1]),unit=1,scale=2)            
                elif self.cfg.dataset in ("cifar10","svhn-ram"): 
                    nn.show_images(w2[:size[0]*size[1]].reshape(size[0]*size[1],3,32,32),(size[0],size[1]),unit=1)
                elif self.cfg.dataset == "faces": 
                    nn.show_images(w2[:size[0]*size[1]].reshape(size[0]*size[1],1,32,32),(size[0],size[1]),unit=1)                       
                elif self.cfg.dataset == "faces48": 
                    nn.show_images(w2[:size[0]*size[1]].reshape(size[0]*size[1],1,48,48),(size[0],size[1]),unit=1)   
                elif self.cfg.dataset == "frey": 
                    nn.show_images(w2[:size[0]*size[1]].reshape(size[0]*size[1],1,20,20),(size[0],size[1]),unit=1)                                                        
                elif self.cfg.dataset == "cifar10-patch": #CIFAR10 dense patches
                    size = int(np.sqrt(self.cfg[0].shape/3))
                    nn.show_images(w2[:256].reshape(256,3,size,size),(16,16),unit=1,scale=2)                                      
                else: #CIFAR10 dense patches
                    size = int(np.sqrt(self.cfg[0].shape))
                    # print size
                    nn.show_images(w2[:200].reshape(200,1,size,size),(10,20),unit=1,scale=2)                                      
                    # nn.show_images(w2[:64].reshape(64,1,size,size),(8,8),unit=1,scale=2)                                      

            if self.cfg.learning == "auto" and self.cfg.arch == "conv":            
           
                # print w2.as_numpy_array()[:num_filters,:,:,:].shape
                num_filters = w2.shape[0]   
                # print w2.shape             
                nn.show_images(w2.as_numpy_array()[:num_filters,:,:,:],(4,num_filters/4),unit=1,scale=2)

                # plt.subplot(212)     
                # num_filters = w1.shape[0]                           
                # nn.show_images(w1.as_numpy_array()[:num_filters,:,:,:],(4,num_filters/4),unit=1)

                # print w1.shape
                # nn.show_images(np.swapaxes(w2.as_numpy_array(),0,1)[:num_filters,:,:,:],(4,num_filters/4),unit=1)
                # plt.show()
            plt.savefig(self.cfg.directory+self.cfg.name+".png",format="png")
            plt.close()
        else:
            if not nn.is_interactive(): 
                if self.cfg.learning == "auto" and not(self.cfg.dataset in ("cifar10-second","svhn-second","mnist-second")):
                    plt.figure(num=1, figsize=(15,10), dpi=80, facecolor='w', edgecolor='k')
                else: 
                    plt.figure(num=1, figsize=(15,5), dpi=80, facecolor='w', edgecolor='k')            
        # X = dp.X_id(0)
        # x = nn.data_convertor(X,0,1)
            w1,b1=self.weights[1]
            w2,b2=self.weights[-1]

            if self.cfg.arch == "dense" and self.cfg.learning == "disc": #dense

                if nn.is_interactive(): plt.figure(num=1, figsize=(15,5), dpi=80, facecolor='w', edgecolor='k')    
                plt.figure(1)    
                plt.subplot(131); self.plot_train()
                plt.subplot(132); self.plot_test()
                plt.subplot(133)        
                
                if self.cfg.dataset == "mnist":
                    if w1.shape[1]>25: nn.show_images(w1[:,:25].T,(5,5)) #MNIST dense
                    else: nn.show_images(w1[:,:].T,(5,w1.shape[1]/5))  #MNIST softmax          
                elif self.cfg.dataset in ("cifar10","svhn-ram"): 
                    # print w1.shape
                    if w1.shape[1]>25: nn.show_images(w1.T[:25,:].reshape(25,3,32,32),(5,5)) #CIFAR10 dense
                    else: nn.show_images(w1[:,:].reshape(3,32,32,10),(5,2))  #CIFAR10 softmax
                elif self.cfg.dataset in ("svhn-torch"): 
                    # print w1.shape
                    if w1.shape[1]>25: nn.show_images(w1.T[:25,:].reshape(25,3,32,32),(5,5),yuv=True) #CIFAR10 dense
                    else: nn.show_images(w1[:,:].reshape(3,32,32,10),(5,2),yuv=True)  #CIFAR10 softmax                    
                elif self.cfg.dataset == "cifar10-patches": #CIFAR10 dense patches
                    if u==None: nn.show_images(w1[:,:25].reshape(3,8,8,25),(5,5)) 
                    else: nn.show_images(whiten_undo(w1[:,:25].T.as_numpy_array(),u,s).T.reshape(3,8,8,25),(5,5),unit=True)
                elif self.cfg.dataset == "mnist-patches": #MNIST dense patches
                    nn.show_images(w1[:,:25].T.as_numpy_array().T.reshape(1,8,8,16),(4,4),unit=True)
                else: 
                    channel = self.H[0].shape[1]
                    size = self.H[0].shape[2]
                    if w1.shape[1]>25: nn.show_images(w1.T[:25,:].reshape(25,channel,size,size),(5,5)) 
                    else: nn.show_images(w1[:,:].reshape(10,channel,size,size),(5,2))   

            if self.cfg.arch == "dense" and self.cfg.learning == "auto" and not self.cfg.dataset_extra: #dense
                if nn.is_interactive(): plt.figure(num=1, figsize=(15,10), dpi=80, facecolor='w', edgecolor='k')    
                plt.figure(1)    
                plt.subplot2grid((2,3), (0,0), colspan=1); self.plot_train()    
                
                plt.subplot2grid((2,3), (0,1), colspan=2)       

                if self.cfg.dataset == "mnist": 
                    nn.show_images(w2[:50],(5,10))         
                    # nn.show_images(w2[:25],(5,5))         
                elif self.cfg.dataset in ("cifar10","svhn-ram"): 
                    # print w2.shape
                    nn.show_images(w2[:50].reshape(50,3,32,32),(5,10))
                elif self.cfg.dataset == "svhn-torch": #CIFAR10 dense patches
                    nn.show_images(w2[:50].reshape(50,3,32,32),(5,10),yuv=True)                    
                elif self.cfg.dataset == "cifar10-patch": #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]/3))
                    # print size
                    nn.show_images(w2[:50].reshape(50,3,size,size),(5,10))                              
                    # if u==None: nn.show_images(w1[:,:25].reshape(3,8,8,25),(5,5)) 
                    # else: nn.show_images(whiten_undo(w1[:,:25].T.as_numpy_array(),u,s).T.reshape(3,8,8,25),(5,5),unit=True)
                elif self.cfg.dataset == "mnist-patches": #MNIST dense patches
                    nn.show_images(w1[:,:25].T.as_numpy_array().T.reshape(1,8,8,16),(4,4),unit=True)
                else: #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]))
                    # print w2[:50].shape,size
                    nn.show_images(w2[:50].reshape(50,1,size,size),(5,10))                     

                plt.subplot2grid((2,3), (1,0), colspan=1); 
                if self.cfg.dataset in ("natural","mnist"): 
                    nn.show_images(w1[:,:25].T,(5,5))  

                    # w1,b1 = self.weights[1] 
                    # w2,b2 = self.weights[2] 
                    # print w1[:5,:5]
                    # print w2[:5,:5].T
                    # print "------"



                plt.subplot2grid((2,3), (1,1), colspan=1); 
                if self.cfg.dataset == "mnist": 
                    nn.show_images(self.H[0][0].reshape(1,1,28,28),(1,1))        
                elif self.cfg.dataset in ("cifar10","svhn-ram"): 
                    nn.show_images(self.H[0][0].reshape(1,3,32,32),(1,1))
                elif self.cfg.dataset == "svhn-torch": 
                    nn.show_images(self.H[0][0].reshape(1,3,32,32),(1,1),yuv=True)                    
                elif self.cfg.dataset == "cifar10-patch": #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]/3))            
                    nn.show_images(self.H[0][0].reshape(1,3,size,size),(1,1))   
                else: #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]))            
                    nn.show_images(self.H[0][0].reshape(1,1,size,size),(1,1))                               

                plt.subplot2grid((2,3), (1,2), colspan=1); 
                if self.cfg.dataset == "mnist": 
                    nn.show_images(self.H[-1][0].reshape(1,1,28,28),(1,1))        
                elif self.cfg.dataset in ("cifar10","svhn-ram"): 
                    nn.show_images(self.H[-1][0].reshape(1,3,32,32),(1,1))
                elif self.cfg.dataset == "svhn-torch": 
                    nn.show_images(self.H[-1][0].reshape(1,3,32,32),(1,1),yuv=True)
                elif self.cfg.dataset == "cifar10-patch": #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]/3))            
                    nn.show_images(self.H[-1][0].reshape(1,3,size,size),(1,1))                   
                else: #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]))            
                    nn.show_images(self.H[-1][0].reshape(1,1,size,size),(1,1))  







            if self.cfg.arch == "conv" and self.cfg.learning == "disc":

                if nn.is_interactive(): plt.figure(num=1, figsize=(15,5), dpi=80, facecolor='w', edgecolor='k')    
                plt.figure(1)    
                plt.subplot(131); self.plot_train()
                plt.subplot(132); self.plot_test()
                plt.subplot(133)        
                
                nn.show_images(w1[:16,:,:,:],(4,4))

            if self.cfg.arch == "conv" and self.cfg.learning == "auto":
                if nn.is_interactive(): plt.figure(num=1, figsize=(15,10), dpi=80, facecolor='w', edgecolor='k')    
                plt.figure(1)             
                # w2,b2 = self.weights[-1]

                # x=X[:,:,:,:1]
                # self.feedforward(x)
                if self.cfg.dataset in ("cifar10-second","svhn-second","mnist-second"): #CIFAR10
                    plt.subplot(131);    
                    # print self.H[0].shape,self.H[-1].shape,self.H[-1].max()
                    nn.show_images(np.swapaxes(self.H[0][:1,:16,:,:].as_numpy_array(),0,1),(4,4),bg="white")  
                    plt.subplot(132); 
                    nn.show_images(np.swapaxes(self.H[-1][:1,:16,:,:].as_numpy_array(),0,1),(4,4),bg="white")  
                    plt.subplot(133); 
                    nn.show_images(np.swapaxes(self.H[-2][:1,:16,:,:].as_numpy_array(),0,1),(4,4),bg="white")
                    # print self.H[-1]
                else:
                    plt.subplot(231);    
                    nn.show_images(self.H[0][0,:,:,:].reshape(1,self.H[0].shape[1],self.H[0].shape[2],self.H[0].shape[3]),(1,1));      
                    plt.subplot(232); 
                    nn.show_images(self.H[-1][0,:,:,:].reshape(1,self.H[-1].shape[1],self.H[-1].shape[2],self.H[-1].shape[3]),(1,1));      

                    plt.subplot(233); 

                    self.plot_train() 
                    plt.subplot(234)
                    # if self.H[1].shape[1]>=16:

                    # H1 = self.H[1].as_numpy_array()
                    # H1 = H1.reshape(16*100,28*28)
                    # print np.nonzero(H1)[0].shape
                    nn.show_images(np.swapaxes(self.H[-2][:1,:16,:,:].as_numpy_array(),0,1),(4,4),bg="white")                              
                    # else:
                       # nn.show_images(np.swapaxes(self.H[1][:1,:8,:,:].as_numpy_array(),0,1),(2,4),bg="white")                              
                    plt.subplot(235)
                    # if w1.shape[0]>16:
                    nn.show_images(w1[:16,:,:,:],(4,4))    
                    # else: 
                        # nn.show_images(w1[:8,:,:,:],(2,4))
                    plt.subplot(236)     
                    # if w2.shape[0]>=16:       
                    # print w2.shape
                    # if self.cfg.dataset == "svhn-torch":
                        # nn.show_images(np.swapaxes(w2.as_numpy_array(),0,1)[:16,:,:,:],(4,4),unit=1,yuv=1)

                    if self.cfg[-1].type=="convolution":
                        nn.show_images(np.swapaxes(w2.as_numpy_array(),0,1)[:16,:,:,:],(4,4),unit=1)
                    if self.cfg[-1].type=="deconvolution":
                        nn.show_images(w2[:16,:,:,:],(4,4),unit=1)
                # else:
                    # nn.show_images(np.swapaxes(w2.as_numpy_array(),0,1)[:,:8,:,:],(2,4),unit=True)             

            if nn.is_interactive(): plt.show()
            else: plt.draw(); plt.pause(.01)  






            if self.cfg.dataset_extra=="generate": #dense
                for k in self.cfg.index_dense:
                    if self.cfg[k].l2_activity!=None: index = k 

                if nn.is_interactive(): plt.figure(num=1, figsize=(15,10), dpi=80, facecolor='w', edgecolor='k')    
                plt.figure(1)    
                plt.subplot2grid((2,3), (0,0), colspan=1); self.plot_train()    
                
                plt.subplot2grid((2,3), (0,1), colspan=2)       

                if self.cfg.dataset == "mnist": 
                    nn.show_images(w2[:50],(5,10))         
                plt.subplot2grid((2,3), (1,1), colspan=1); 
                # if self.cfg.dataset == "mnist": 
                # print self.H[index].shape
                x = self.H[index][:,0].as_numpy_array()
                y = self.H[index][:,1].as_numpy_array()
                plt.plot(x,y,'bo')
                # plt.grid()

                x = self.T_sort[:,0].as_numpy_array()
                y = self.T_sort[:,1].as_numpy_array()
                plt.plot(x,y,'ro')
                # plt.grid()    

                # x = self.test_rand[:,0].as_numpy_array()
                # y = self.test_rand[:,1].as_numpy_array()
                # plt.plot(x,y,'go')
                plt.grid()   

                # nn.show_images(self.H[0][0].reshape(1,1,28,28),(1,1))        
 
                plt.subplot2grid((2,3), (1,2), colspan=1); 
                if self.cfg.dataset == "mnist": 
                    nn.show_images(self.H[-1][0].reshape(1,1,28,28),(1,1))        


        if self.cfg.dataset == "mnist" and self.cfg.dataset_extra  in ("vae","generate"):
            plt.figure(num=5, figsize=(15,10), dpi=80, facecolor='w', edgecolor='k')
            temp = nn.randn((64,784))
            self.test_mode = True    
            self.feedforward(temp)
            self.test_mode = False
            nn.show_images(self.H[-1].reshape(64,1,28,28),(8,8))  
            if visual_params['save']:
                plt.savefig(self.cfg.directory+self.cfg.name+"_samples.png",format="png")
            else:
                plt.draw(); plt.pause(.01)
Exemple #7
0
    def gradient_check(self):

        backend_backup = nn.backend
        nn.set_backend("numpy")
        assert self.cfg.want_dropout == False
        # assert self.cfg[-1].activation==nn.softmax
        assert nn.backend == nn.NumpyBackend

        if self.cfg[0].type == "convolution":
            x = nn.randn((2, self.cfg[0].shape[0], self.cfg[0].shape[1],
                          self.cfg[0].shape[2]))
        else:
            x = nn.randn((2, self.cfg[0].shape))

        if self.cfg[self.size - 1].type == "dense":
            t = nn.zeros((2, self.cfg[-1].shape))
            t[0, np.random.randint(self.cfg[-1].shape)] = 1
            t[1, np.random.randint(self.cfg[-1].shape)] = 1
            #since we are using a trick in cross-entropy cost function in order not to get nan, t values should be either 0 or 1.
            # row_sums = t.sum(axis=1);t = t / row_sums[:, np.newaxis] #for softmax gradient checking, rows should sum up to one.
        else:
            t = nn.randn((2, self.cfg[-1].shape[0], self.cfg[-1].shape[1],
                          self.cfg[-1].shape[2]))
            # print self.cfg[-1].shape

        epsilon = .00001
        for k in range(0, self.size):
            if self.cfg[k].type == "dense":
                self.weights.randn(.01)
                self.compute_grad(
                    x, t
                )  #is it necessary to have this inside the loop? don't think so.

                if k == 0: continue
                wk, bk = self.weights[k]
                dwk, dbk = self.dweights[k]
                f = self.feedforward(x, t)
                wk[0, 0] += epsilon
                f_new = self.feedforward(x, t)
                df = (f_new - f)
                print k, df / epsilon / dwk[0, 0]
                f = self.feedforward(x, t)
                bk[0, 0] += epsilon
                f_new = self.feedforward(x, t)
                df = (f_new - f)
                print k, df / epsilon / dbk[0, 0]
            if self.cfg[k].type in ("convolution", "deconvolution"):
                self.weights.randn(.01)
                self.compute_grad(x, t)

                if k == 0: continue
                wk, bk = self.weights[k]
                dwk, dbk = self.dweights[k]
                f = self.feedforward(x, t)
                # print wk.shape
                wk[0, 0, 2, 0] += epsilon
                f_new = self.feedforward(x, t)
                df = (f_new - f)
                # print f_new,f
                print k, df / epsilon / dwk[0, 0, 2, 0]
                f = self.feedforward(x, t)
                bk[0, 0] += epsilon
                f_new = self.feedforward(x, t)
                df = (f_new - f)
                print k, df / epsilon / dbk[0, 0]

        nn.backend = backend_backup
Exemple #8
0
    def visualize(self, dp, visual_params):

        w1, b1 = self.weights[1]
        w2, b2 = self.weights[-1]

        if visual_params['save']:
            if self.cfg.learning == "disc":
                num_filters = w1.shape[0]
                nn.show_images(w1, (4, num_filters / 4))
            if self.cfg.arch == "dense" and self.cfg.learning == "auto":
                # plt.figure(num=None, figsize=(30,90), dpi=80, facecolor='w', edgecolor='k')
                size = (10, 20)
                if self.cfg.dataset == "mnist":
                    # print size, w2.shape
                    nn.show_images(w2[:size[0] * size[1]], (size[0], size[1]),
                                   unit=1,
                                   scale=2)
                elif self.cfg.dataset in ("cifar10", "svhn-ram"):
                    nn.show_images(w2[:size[0] * size[1]].reshape(
                        size[0] * size[1], 3, 32, 32), (size[0], size[1]),
                                   unit=1)
                elif self.cfg.dataset == "faces":
                    nn.show_images(w2[:size[0] * size[1]].reshape(
                        size[0] * size[1], 1, 32, 32), (size[0], size[1]),
                                   unit=1)
                elif self.cfg.dataset == "faces48":
                    nn.show_images(w2[:size[0] * size[1]].reshape(
                        size[0] * size[1], 1, 48, 48), (size[0], size[1]),
                                   unit=1)
                elif self.cfg.dataset == "frey":
                    nn.show_images(w2[:size[0] * size[1]].reshape(
                        size[0] * size[1], 1, 20, 20), (size[0], size[1]),
                                   unit=1)
                elif self.cfg.dataset == "cifar10-patch":  #CIFAR10 dense patches
                    size = int(np.sqrt(self.cfg[0].shape / 3))
                    nn.show_images(w2[:256].reshape(256, 3, size, size),
                                   (16, 16),
                                   unit=1,
                                   scale=2)
                else:  #CIFAR10 dense patches
                    size = int(np.sqrt(self.cfg[0].shape))
                    # print size
                    nn.show_images(w2[:200].reshape(200, 1, size, size),
                                   (10, 20),
                                   unit=1,
                                   scale=2)
                    # nn.show_images(w2[:64].reshape(64,1,size,size),(8,8),unit=1,scale=2)

            if self.cfg.learning == "auto" and self.cfg.arch == "conv":

                # print w2.as_numpy_array()[:num_filters,:,:,:].shape
                num_filters = w2.shape[0]
                # print w2.shape
                nn.show_images(w2.as_numpy_array()[:num_filters, :, :, :],
                               (4, num_filters / 4),
                               unit=1,
                               scale=2)

                # plt.subplot(212)
                # num_filters = w1.shape[0]
                # nn.show_images(w1.as_numpy_array()[:num_filters,:,:,:],(4,num_filters/4),unit=1)

                # print w1.shape
                # nn.show_images(np.swapaxes(w2.as_numpy_array(),0,1)[:num_filters,:,:,:],(4,num_filters/4),unit=1)
                # plt.show()
            plt.savefig(self.cfg.directory + self.cfg.name + ".png",
                        format="png")
            plt.close()
        else:
            if not nn.is_interactive():
                if self.cfg.learning == "auto" and not (self.cfg.dataset in (
                        "cifar10-second", "svhn-second", "mnist-second")):
                    plt.figure(num=1,
                               figsize=(15, 10),
                               dpi=80,
                               facecolor='w',
                               edgecolor='k')
                else:
                    plt.figure(num=1,
                               figsize=(15, 5),
                               dpi=80,
                               facecolor='w',
                               edgecolor='k')
        # X = dp.X_id(0)
        # x = nn.data_convertor(X,0,1)
            w1, b1 = self.weights[1]
            w2, b2 = self.weights[-1]

            if self.cfg.arch == "dense" and self.cfg.learning == "disc":  #dense

                if nn.is_interactive():
                    plt.figure(num=1,
                               figsize=(15, 5),
                               dpi=80,
                               facecolor='w',
                               edgecolor='k')
                plt.figure(1)
                plt.subplot(131)
                self.plot_train()
                plt.subplot(132)
                self.plot_test()
                plt.subplot(133)

                if self.cfg.dataset == "mnist":
                    if w1.shape[1] > 25:
                        nn.show_images(w1[:, :25].T, (5, 5))  #MNIST dense
                    else:
                        nn.show_images(w1[:, :].T,
                                       (5, w1.shape[1] / 5))  #MNIST softmax
                elif self.cfg.dataset in ("cifar10", "svhn-ram"):
                    # print w1.shape
                    if w1.shape[1] > 25:
                        nn.show_images(w1.T[:25, :].reshape(25, 3, 32, 32),
                                       (5, 5))  #CIFAR10 dense
                    else:
                        nn.show_images(w1[:, :].reshape(3, 32, 32, 10),
                                       (5, 2))  #CIFAR10 softmax
                elif self.cfg.dataset in ("svhn-torch"):
                    # print w1.shape
                    if w1.shape[1] > 25:
                        nn.show_images(w1.T[:25, :].reshape(25, 3, 32, 32),
                                       (5, 5),
                                       yuv=True)  #CIFAR10 dense
                    else:
                        nn.show_images(w1[:, :].reshape(3, 32, 32, 10), (5, 2),
                                       yuv=True)  #CIFAR10 softmax
                elif self.cfg.dataset == "cifar10-patches":  #CIFAR10 dense patches
                    if u == None:
                        nn.show_images(w1[:, :25].reshape(3, 8, 8, 25), (5, 5))
                    else:
                        nn.show_images(whiten_undo(
                            w1[:, :25].T.as_numpy_array(), u,
                            s).T.reshape(3, 8, 8, 25), (5, 5),
                                       unit=True)
                elif self.cfg.dataset == "mnist-patches":  #MNIST dense patches
                    nn.show_images(w1[:, :25].T.as_numpy_array().T.reshape(
                        1, 8, 8, 16), (4, 4),
                                   unit=True)
                else:
                    channel = self.H[0].shape[1]
                    size = self.H[0].shape[2]
                    if w1.shape[1] > 25:
                        nn.show_images(
                            w1.T[:25, :].reshape(25, channel, size, size),
                            (5, 5))
                    else:
                        nn.show_images(
                            w1[:, :].reshape(10, channel, size, size), (5, 2))

            if self.cfg.arch == "dense" and self.cfg.learning == "auto" and not self.cfg.dataset_extra:  #dense
                if nn.is_interactive():
                    plt.figure(num=1,
                               figsize=(15, 10),
                               dpi=80,
                               facecolor='w',
                               edgecolor='k')
                plt.figure(1)
                plt.subplot2grid((2, 3), (0, 0), colspan=1)
                self.plot_train()

                plt.subplot2grid((2, 3), (0, 1), colspan=2)

                if self.cfg.dataset == "mnist":
                    nn.show_images(w2[:50], (5, 10))
                    # nn.show_images(w2[:25],(5,5))
                elif self.cfg.dataset in ("cifar10", "svhn-ram"):
                    # print w2.shape
                    nn.show_images(w2[:50].reshape(50, 3, 32, 32), (5, 10))
                elif self.cfg.dataset == "svhn-torch":  #CIFAR10 dense patches
                    nn.show_images(w2[:50].reshape(50, 3, 32, 32), (5, 10),
                                   yuv=True)
                elif self.cfg.dataset == "cifar10-patch":  #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1] / 3))
                    # print size
                    nn.show_images(w2[:50].reshape(50, 3, size, size), (5, 10))
                    # if u==None: nn.show_images(w1[:,:25].reshape(3,8,8,25),(5,5))
                    # else: nn.show_images(whiten_undo(w1[:,:25].T.as_numpy_array(),u,s).T.reshape(3,8,8,25),(5,5),unit=True)
                elif self.cfg.dataset == "mnist-patches":  #MNIST dense patches
                    nn.show_images(w1[:, :25].T.as_numpy_array().T.reshape(
                        1, 8, 8, 16), (4, 4),
                                   unit=True)
                else:  #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]))
                    # print w2[:50].shape,size
                    nn.show_images(w2[:50].reshape(50, 1, size, size), (5, 10))

                plt.subplot2grid((2, 3), (1, 0), colspan=1)
                if self.cfg.dataset in ("natural", "mnist"):
                    nn.show_images(w1[:, :25].T, (5, 5))

                    # w1,b1 = self.weights[1]
                    # w2,b2 = self.weights[2]
                    # print w1[:5,:5]
                    # print w2[:5,:5].T
                    # print "------"

                plt.subplot2grid((2, 3), (1, 1), colspan=1)
                if self.cfg.dataset == "mnist":
                    nn.show_images(self.H[0][0].reshape(1, 1, 28, 28), (1, 1))
                elif self.cfg.dataset in ("cifar10", "svhn-ram"):
                    nn.show_images(self.H[0][0].reshape(1, 3, 32, 32), (1, 1))
                elif self.cfg.dataset == "svhn-torch":
                    nn.show_images(self.H[0][0].reshape(1, 3, 32, 32), (1, 1),
                                   yuv=True)
                elif self.cfg.dataset == "cifar10-patch":  #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1] / 3))
                    nn.show_images(self.H[0][0].reshape(1, 3, size, size),
                                   (1, 1))
                else:  #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]))
                    nn.show_images(self.H[0][0].reshape(1, 1, size, size),
                                   (1, 1))

                plt.subplot2grid((2, 3), (1, 2), colspan=1)
                if self.cfg.dataset == "mnist":
                    nn.show_images(self.H[-1][0].reshape(1, 1, 28, 28), (1, 1))
                elif self.cfg.dataset in ("cifar10", "svhn-ram"):
                    nn.show_images(self.H[-1][0].reshape(1, 3, 32, 32), (1, 1))
                elif self.cfg.dataset == "svhn-torch":
                    nn.show_images(self.H[-1][0].reshape(1, 3, 32, 32), (1, 1),
                                   yuv=True)
                elif self.cfg.dataset == "cifar10-patch":  #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1] / 3))
                    nn.show_images(self.H[-1][0].reshape(1, 3, size, size),
                                   (1, 1))
                else:  #CIFAR10 dense patches
                    size = int(np.sqrt(self.H[0].shape[1]))
                    nn.show_images(self.H[-1][0].reshape(1, 1, size, size),
                                   (1, 1))

            if self.cfg.arch == "conv" and self.cfg.learning == "disc":

                if nn.is_interactive():
                    plt.figure(num=1,
                               figsize=(15, 5),
                               dpi=80,
                               facecolor='w',
                               edgecolor='k')
                plt.figure(1)
                plt.subplot(131)
                self.plot_train()
                plt.subplot(132)
                self.plot_test()
                plt.subplot(133)

                nn.show_images(w1[:16, :, :, :], (4, 4))

            if self.cfg.arch == "conv" and self.cfg.learning == "auto":
                if nn.is_interactive():
                    plt.figure(num=1,
                               figsize=(15, 10),
                               dpi=80,
                               facecolor='w',
                               edgecolor='k')
                plt.figure(1)
                # w2,b2 = self.weights[-1]

                # x=X[:,:,:,:1]
                # self.feedforward(x)
                if self.cfg.dataset in ("cifar10-second", "svhn-second",
                                        "mnist-second"):  #CIFAR10
                    plt.subplot(131)
                    # print self.H[0].shape,self.H[-1].shape,self.H[-1].max()
                    nn.show_images(np.swapaxes(
                        self.H[0][:1, :16, :, :].as_numpy_array(), 0, 1),
                                   (4, 4),
                                   bg="white")
                    plt.subplot(132)
                    nn.show_images(np.swapaxes(
                        self.H[-1][:1, :16, :, :].as_numpy_array(), 0, 1),
                                   (4, 4),
                                   bg="white")
                    plt.subplot(133)
                    nn.show_images(np.swapaxes(
                        self.H[-2][:1, :16, :, :].as_numpy_array(), 0, 1),
                                   (4, 4),
                                   bg="white")
                    # print self.H[-1]
                else:
                    plt.subplot(231)
                    nn.show_images(
                        self.H[0][0, :, :, :].reshape(1, self.H[0].shape[1],
                                                      self.H[0].shape[2],
                                                      self.H[0].shape[3]),
                        (1, 1))
                    plt.subplot(232)
                    nn.show_images(
                        self.H[-1][0, :, :, :].reshape(1, self.H[-1].shape[1],
                                                       self.H[-1].shape[2],
                                                       self.H[-1].shape[3]),
                        (1, 1))

                    plt.subplot(233)

                    self.plot_train()
                    plt.subplot(234)
                    # if self.H[1].shape[1]>=16:

                    # H1 = self.H[1].as_numpy_array()
                    # H1 = H1.reshape(16*100,28*28)
                    # print np.nonzero(H1)[0].shape
                    nn.show_images(np.swapaxes(
                        self.H[-2][:1, :16, :, :].as_numpy_array(), 0, 1),
                                   (4, 4),
                                   bg="white")
                    # else:
                    # nn.show_images(np.swapaxes(self.H[1][:1,:8,:,:].as_numpy_array(),0,1),(2,4),bg="white")
                    plt.subplot(235)
                    # if w1.shape[0]>16:
                    nn.show_images(w1[:16, :, :, :], (4, 4))
                    # else:
                    # nn.show_images(w1[:8,:,:,:],(2,4))
                    plt.subplot(236)
                    # if w2.shape[0]>=16:
                    # print w2.shape
                    # if self.cfg.dataset == "svhn-torch":
                    # nn.show_images(np.swapaxes(w2.as_numpy_array(),0,1)[:16,:,:,:],(4,4),unit=1,yuv=1)

                    if self.cfg[-1].type == "convolution":
                        nn.show_images(np.swapaxes(w2.as_numpy_array(), 0,
                                                   1)[:16, :, :, :], (4, 4),
                                       unit=1)
                    if self.cfg[-1].type == "deconvolution":
                        nn.show_images(w2[:16, :, :, :], (4, 4), unit=1)
                # else:
                # nn.show_images(np.swapaxes(w2.as_numpy_array(),0,1)[:,:8,:,:],(2,4),unit=True)

            if nn.is_interactive(): plt.show()
            else:
                plt.draw()
                plt.pause(.01)

            if self.cfg.dataset_extra == "generate":  #dense
                for k in self.cfg.index_dense:
                    if self.cfg[k].l2_activity != None: index = k

                if nn.is_interactive():
                    plt.figure(num=1,
                               figsize=(15, 10),
                               dpi=80,
                               facecolor='w',
                               edgecolor='k')
                plt.figure(1)
                plt.subplot2grid((2, 3), (0, 0), colspan=1)
                self.plot_train()

                plt.subplot2grid((2, 3), (0, 1), colspan=2)

                if self.cfg.dataset == "mnist":
                    nn.show_images(w2[:50], (5, 10))
                plt.subplot2grid((2, 3), (1, 1), colspan=1)
                # if self.cfg.dataset == "mnist":
                # print self.H[index].shape
                x = self.H[index][:, 0].as_numpy_array()
                y = self.H[index][:, 1].as_numpy_array()
                plt.plot(x, y, 'bo')
                # plt.grid()

                x = self.T_sort[:, 0].as_numpy_array()
                y = self.T_sort[:, 1].as_numpy_array()
                plt.plot(x, y, 'ro')
                # plt.grid()

                # x = self.test_rand[:,0].as_numpy_array()
                # y = self.test_rand[:,1].as_numpy_array()
                # plt.plot(x,y,'go')
                plt.grid()

                # nn.show_images(self.H[0][0].reshape(1,1,28,28),(1,1))

                plt.subplot2grid((2, 3), (1, 2), colspan=1)
                if self.cfg.dataset == "mnist":
                    nn.show_images(self.H[-1][0].reshape(1, 1, 28, 28), (1, 1))

        if self.cfg.dataset == "mnist" and self.cfg.dataset_extra in (
                "vae", "generate"):
            plt.figure(num=5,
                       figsize=(15, 10),
                       dpi=80,
                       facecolor='w',
                       edgecolor='k')
            temp = nn.randn((64, 784))
            self.test_mode = True
            self.feedforward(temp)
            self.test_mode = False
            nn.show_images(self.H[-1].reshape(64, 1, 28, 28), (8, 8))
            if visual_params['save']:
                plt.savefig(self.cfg.directory + self.cfg.name +
                            "_samples.png",
                            format="png")
            else:
                plt.draw()
                plt.pause(.01)