Exemple #1
0
    def get_qconf_from_hw_config_subdict(quantization_subdict: Dict, for_weights=False):
        bits = quantization_subdict["bits"]
        mode = HWConfig.get_quantization_mode_from_config_value(quantization_subdict["mode"])
        is_per_channel = HWConfig.get_is_per_channel_from_config_value(quantization_subdict["granularity"])
        signedness_to_force = None
        if 'level_low' in quantization_subdict and 'level_high' in quantization_subdict:
            signedness_to_force = False
            if mode == QuantizationMode.SYMMETRIC:
                if quantization_subdict['level_low'] < 0 < quantization_subdict['level_high']:
                    signedness_to_force = True
                true_level_low, true_level_high, _ = SymmetricQuantizer.calculate_level_ranges(bits, True)
            else:
                signedness_to_force = True
                true_level_low, true_level_high, _ = AsymmetricQuantizer.calculate_level_ranges(bits)

            assert quantization_subdict['level_low'] == true_level_low, \
                    "Invalid value of quantizer parameter `level_low`.\
                         The parameter must be consistent with other parameters!"
            assert quantization_subdict['level_high'] == true_level_high, \
                    "Invalid value of quantizer parameter `level_high`.\
                         The parameter must be consistent with other parameters!"

        return QuantizerConfig(bits=bits,
                               mode=mode,
                               per_channel=is_per_channel,
                               signedness_to_force=signedness_to_force,
                               is_weights=for_weights)
        print()
        print("Custom Symmetric Per Activation Channel  (cuda 0 ) impl")
        print("input size: {0}".format(input_size))
        run_profile(
            SymmetricQuantizer(
                QuantizerConfig(QuantizationParams(bits=NBITS),
                                input_shape=input_size,
                                per_channel=True,
                                is_weights=False)).cuda(), input_size, 'cuda',
            gpu_runs)

        print()
        print("Custom Asymmetric (cuda 0 ) impl:")
        print("input size: {0}".format(input_size))
        run_profile(
            AsymmetricQuantizer(QuantizerConfig(
                QuantizationParams(bits=NBITS))).cuda(), input_size, 'cuda',
            gpu_runs)

        print()
        print("Custom Asymmetric Per Weight Channel  (cuda 0 ) impl")
        print("input size: {0}".format(input_size))
        run_profile(
            AsymmetricQuantizer(
                QuantizerConfig(QuantizationParams(bits=NBITS),
                                input_shape=input_size,
                                per_channel=True,
                                is_weights=True)).cuda(), input_size, 'cuda',
            gpu_runs)

        print()
        print("Custom Asymmetric Per Activation Channel  (cuda 0 ) impl")
Exemple #3
0
def test_onnx_export_to_quantize_dequantize_per_channel():
    # SYMMETRIC
    q_config = QuantizerConfig(input_shape=(2, 64, 15, 10),
                               bits=8,
                               mode=QuantizationMode.SYMMETRIC,
                               signedness_to_force=None,
                               per_channel=True)
    sym_quantizer = SymmetricQuantizer(q_config)
    # pylint: disable=protected-access
    sym_quantizer._export_mode = QuantizerExportMode.ONNX_QUANTIZE_DEQUANTIZE_PAIRS

    x = torch.rand((2, 64, 15, 10))
    sym_quantizer.run_export_quantization(x)

    q_config = QuantizerConfig(bits=8,
                               mode=QuantizationMode.SYMMETRIC,
                               signedness_to_force=None,
                               per_channel=False)
    sym_quantizer = SymmetricQuantizer(q_config)
    # pylint: disable=protected-access
    sym_quantizer._export_mode = QuantizerExportMode.ONNX_QUANTIZE_DEQUANTIZE_PAIRS

    x = torch.rand((2, 64, 15, 10))
    sym_quantizer.run_export_quantization(x)

    q_config = QuantizerConfig(input_shape=(2, 64, 15, 10),
                               bits=8,
                               mode=QuantizationMode.SYMMETRIC,
                               signedness_to_force=None,
                               per_channel=True)
    sym_quantizer = SymmetricQuantizer(q_config)
    # pylint: disable=protected-access
    sym_quantizer._export_mode = QuantizerExportMode.ONNX_QUANTIZE_DEQUANTIZE_PAIRS
    sym_quantizer.scale = torch.nn.Parameter(torch.rand(1, 64, 1, 1))

    x = torch.rand((2, 64, 15, 10))
    try:
        sym_quantizer.run_export_quantization(x)
    except RuntimeError as e:
        assert str(
            e) == "PyTorch v1.5.0 export to ONNX using QuantizeLinear-DequantizeLinear " \
                  "doesn't support per channel quantization"
    # ASYMMETRIC
    q_config = QuantizerConfig(input_shape=(2, 64, 15, 10),
                               bits=8,
                               mode=QuantizationMode.ASYMMETRIC,
                               signedness_to_force=None,
                               per_channel=True)
    assym_quantizer = AsymmetricQuantizer(q_config)
    # pylint: disable=protected-access
    assym_quantizer._export_mode = QuantizerExportMode.ONNX_QUANTIZE_DEQUANTIZE_PAIRS

    x = torch.rand((2, 64, 15, 10))
    assym_quantizer.run_export_quantization(x)

    q_config = QuantizerConfig(bits=8,
                               mode=QuantizationMode.ASYMMETRIC,
                               signedness_to_force=None,
                               per_channel=False)
    assym_quantizer = AsymmetricQuantizer(q_config)
    # pylint: disable=protected-access
    assym_quantizer._export_mode = QuantizerExportMode.ONNX_QUANTIZE_DEQUANTIZE_PAIRS

    x = torch.rand((2, 64, 15, 10))
    assym_quantizer.run_export_quantization(x)

    q_config = QuantizerConfig(input_shape=(2, 64, 15, 10),
                               bits=8,
                               mode=QuantizationMode.ASYMMETRIC,
                               signedness_to_force=None,
                               per_channel=True)
    assym_quantizer = AsymmetricQuantizer(q_config)
    # pylint: disable=protected-access
    assym_quantizer._export_mode = QuantizerExportMode.ONNX_QUANTIZE_DEQUANTIZE_PAIRS
    sym_quantizer.scale = torch.nn.Parameter(torch.rand(1, 64, 1, 1))

    x = torch.rand((2, 64, 15, 10))
    try:
        assym_quantizer.run_export_quantization(x)
    except RuntimeError as e:
        assert str(
            e) == "PyTorch v1.5.0 export to ONNX using QuantizeLinear-DequantizeLinear" \
                  " doesn't support per channel quantization"
Exemple #4
0
    for k, attrs in nx_graph.nodes.items():
        attrs = {k: str(v) for k, v in attrs.items()}
        load_attrs = {k: str(v).strip('"') for k, v in load_graph.nodes[k].items()}
        assert attrs == load_attrs

    assert load_graph.nodes.keys() == nx_graph.nodes.keys()
    assert nx.DiGraph(load_graph).edges == nx_graph.edges


QuantizeConfig = namedtuple('QuantizeConfig', ['quantizer', 'graph_dir'])

QUANTIZERS = [
    QuantizeConfig(lambda _, is_weights=False, input_shape=None: SymmetricQuantizer(
        QuantizerConfig(signedness_to_force=is_weights, is_weights=is_weights, input_shape=input_shape)),
                   'symmetric'),
    QuantizeConfig(lambda _, is_weights, input_shape=None: AsymmetricQuantizer(QuantizerConfig()), 'asymmetric')
]


@pytest.fixture(scope='function', params=QUANTIZERS, ids=[pair.graph_dir for pair in QUANTIZERS])
def _quantize_config(request):
    config = request.param
    graph_dir = os.path.join('quantized', config.graph_dir)
    return QuantizeConfig(config.quantizer, graph_dir)


def default_forward_fn(model, input_size_):
    device = next(model.parameters()).device
    return model(torch.zeros(input_size_).to(device))

    for k, attrs in nx_graph.nodes.items():
        attrs = {k: str(v) for k, v in attrs.items()}
        load_attrs = {k: str(v).strip('"') for k, v in load_graph.nodes[k].items()}
        assert attrs == load_attrs

    assert load_graph.nodes.keys() == nx_graph.nodes.keys()
    assert nx.DiGraph(load_graph).edges == nx_graph.edges


QuantizeConfig = namedtuple('QuantizeConfig', ['quantizer', 'graph_dir'])

QUANTIZERS = [
    QuantizeConfig(lambda _, is_weights=False: SymmetricQuantizer(
        QuantizerConfig(QuantizationParams(signed=is_weights), is_weights=is_weights)),
                   'symmetric'),
    QuantizeConfig(lambda _, is_weights: AsymmetricQuantizer(QuantizerConfig(QuantizationParams())), 'asymmetric')
]


@pytest.fixture(scope='function', params=QUANTIZERS, ids=[pair.graph_dir for pair in QUANTIZERS])
def _quantize_config(request):
    config = request.param
    graph_dir = os.path.join('quantized', config.graph_dir)
    return QuantizeConfig(config.quantizer, graph_dir)


TEST_MODELS = [
    ("alexnet.dot", test_models.AlexNet, (1, 3, 32, 32)),
    ("lenet.dot", test_models.LeNet, (1, 3, 32, 32)),
    ("resnet18.dot", test_models.ResNet18, (1, 3, 32, 32)),
    ("resnet50.dot", test_models.ResNet50, (1, 3, 32, 32)),