Exemple #1
0
 def __init__(self, in_channels):
     super().__init__()
     self.conv1 = nn.Conv2d(in_channels, 10, 3)
     self.conv2 = nn.LayerChoice([nn.Conv2d(10, 10, 3), nn.MaxPool2d(3)])
     self.conv3 = nn.LayerChoice([nn.Identity(), nn.Conv2d(10, 10, 1)])
     self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
     self.fc = nn.Linear(10, 1)
Exemple #2
0
            def __init__(self, block, layers, num_classes=1000):
                super(ResNet, self).__init__()
                self.inplanes = 64
                self.conv1 = nn.Conv2d(3,
                                       64,
                                       kernel_size=7,
                                       stride=2,
                                       padding=3,
                                       bias=False)
                self.bn1 = nn.BatchNorm2d(64)
                self.relu = nn.ReLU(inplace=True)
                self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                self.layer1 = self._make_layer(block, 64, layers[0])
                self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
                self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
                self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(512 * block.expansion, num_classes)

                for m in self.modules():
                    if isinstance(m, nn.Conv2d):
                        torch.nn.init.kaiming_normal_(m.weight,
                                                      mode='fan_out',
                                                      nonlinearity='relu')
                    elif isinstance(m, nn.BatchNorm2d):
                        torch.nn.init.constant_(m.weight, 1)
                        torch.nn.init.constant_(m.bias, 0)
Exemple #3
0
 def __init__(self,
              channels: int,
              reduction: int = 4,
              activation_layer: Optional[Callable[..., nn.Module]] = None):
     super().__init__()
     if activation_layer is None:
         activation_layer = nn.Sigmoid
     self.avg_pool = nn.AdaptiveAvgPool2d(1)
     self.fc = nn.Sequential(
         nn.Linear(channels, make_divisible(channels // reduction, 8)),
         nn.ReLU(inplace=True),
         nn.Linear(make_divisible(channels // reduction, 8), channels),
         activation_layer())
Exemple #4
0
    def __init__(self, num_labels: int = 1000,
                 base_widths: Tuple[int, ...] = (32, 16, 32, 40, 80, 96, 192, 320, 1280),
                 dropout_rate: float = 0.,
                 width_mult: float = 1.0,
                 bn_eps: float = 1e-3,
                 bn_momentum: float = 0.1):

        super().__init__()

        assert len(base_widths) == 9
        # include the last stage info widths here
        widths = [make_divisible(width * width_mult, 8) for width in base_widths]
        downsamples = [True, False, True, True, True, False, True, False]

        self.num_labels = num_labels
        self.dropout_rate = dropout_rate
        self.bn_eps = bn_eps
        self.bn_momentum = bn_momentum

        self.stem = ConvBNReLU(3, widths[0], stride=2, norm_layer=nn.BatchNorm2d)

        blocks: List[nn.Module] = [
            # first stage is fixed
            DepthwiseSeparableConv(widths[0], widths[1], kernel_size=3, stride=1)
        ]

        # https://github.com/ultmaster/AceNAS/blob/46c8895fd8a05ffbc61a6b44f1e813f64b4f66b7/searchspace/proxylessnas/__init__.py#L21
        for stage in range(2, 8):
            # Rather than returning a fixed module here,
            # we return a builder that dynamically creates module for different `repeat_idx`.
            builder = inverted_residual_choice_builder(
                [3, 6], [3, 5, 7], downsamples[stage], widths[stage - 1], widths[stage], f's{stage}')
            if stage < 7:
                blocks.append(nn.Repeat(builder, (1, 4), label=f's{stage}_depth'))
            else:
                # No mutation for depth in the last stage.
                # Directly call builder to initiate one block
                blocks.append(builder(0))

        self.blocks = nn.Sequential(*blocks)

        # final layers
        self.feature_mix_layer = ConvBNReLU(widths[7], widths[8], kernel_size=1, norm_layer=nn.BatchNorm2d)
        self.global_avg_pooling = nn.AdaptiveAvgPool2d(1)
        self.dropout_layer = nn.Dropout(dropout_rate)
        self.classifier = nn.Linear(widths[-1], num_labels)

        reset_parameters(self, bn_momentum=bn_momentum, bn_eps=bn_eps)
Exemple #5
0
    def __init__(self,
                 input_size,
                 in_channels,
                 channels,
                 n_classes,
                 n_layers,
                 n_nodes=4,
                 stem_multiplier=3,
                 auxiliary=False):
        super().__init__()
        self.in_channels = in_channels
        self.channels = channels
        self.n_classes = n_classes
        self.n_layers = n_layers
        self.aux_pos = 2 * n_layers // 3 if auxiliary else -1

        c_cur = stem_multiplier * self.channels
        self.stem = nn.Sequential(
            nn.Conv2d(in_channels, c_cur, 3, 1, 1, bias=False),
            nn.BatchNorm2d(c_cur))

        # for the first cell, stem is used for both s0 and s1
        # [!] channels_pp and channels_p is output channel size, but c_cur is input channel size.
        channels_pp, channels_p, c_cur = c_cur, c_cur, channels

        self.cells = nn.ModuleList()
        reduction_p, reduction = False, False
        for i in range(n_layers):
            reduction_p, reduction = reduction, False
            # Reduce featuremap size and double channels in 1/3 and 2/3 layer.
            if i in [n_layers // 3, 2 * n_layers // 3]:
                c_cur *= 2
                reduction = True

            cell = Cell(n_nodes, channels_pp, channels_p, c_cur, reduction_p,
                        reduction)
            self.cells.append(cell)
            c_cur_out = c_cur * n_nodes
            channels_pp, channels_p = channels_p, c_cur_out

            #if i == self.aux_pos:
            #    self.aux_head = AuxiliaryHead(input_size // 4, channels_p, n_classes)

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.linear = nn.Linear(channels_p, n_classes)
Exemple #6
0
    def __init__(self,
                 op_candidates: List[str],
                 merge_op: Literal['all', 'loose_end'] = 'all',
                 num_nodes_per_cell: int = 4,
                 width: Union[Tuple[int, ...], int] = 16,
                 num_cells: Union[Tuple[int, ...], int] = 20,
                 dataset: Literal['cifar', 'imagenet'] = 'imagenet',
                 auxiliary_loss: bool = False):
        super().__init__()

        self.dataset = dataset
        self.num_labels = 10 if dataset == 'cifar' else 1000
        self.auxiliary_loss = auxiliary_loss

        # preprocess the specified width and depth
        if isinstance(width, Iterable):
            C = nn.ValueChoice(list(width), label='width')
        else:
            C = width

        self.num_cells: nn.MaybeChoice[int] = cast(int, num_cells)
        if isinstance(num_cells, Iterable):
            self.num_cells = nn.ValueChoice(list(num_cells), label='depth')
        num_cells_per_stage = [
            (i + 1) * self.num_cells // 3 - i * self.num_cells // 3
            for i in range(3)
        ]

        # auxiliary head is different for network targetted at different datasets
        if dataset == 'imagenet':
            self.stem0 = nn.Sequential(
                nn.Conv2d(3,
                          cast(int, C // 2),
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(cast(int, C // 2)),
                nn.ReLU(inplace=True),
                nn.Conv2d(cast(int, C // 2),
                          cast(int, C),
                          3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(C),
            )
            self.stem1 = nn.Sequential(
                nn.ReLU(inplace=True),
                nn.Conv2d(cast(int, C),
                          cast(int, C),
                          3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(C),
            )
            C_pprev = C_prev = C_curr = C
            last_cell_reduce = True
        elif dataset == 'cifar':
            self.stem = nn.Sequential(
                nn.Conv2d(3, cast(int, 3 * C), 3, padding=1, bias=False),
                nn.BatchNorm2d(cast(int, 3 * C)))
            C_pprev = C_prev = 3 * C
            C_curr = C
            last_cell_reduce = False
        else:
            raise ValueError(f'Unsupported dataset: {dataset}')

        self.stages = nn.ModuleList()
        for stage_idx in range(3):
            if stage_idx > 0:
                C_curr *= 2
            # For a stage, we get C_in, C_curr, and C_out.
            # C_in is only used in the first cell.
            # C_curr is number of channels for each operator in current stage.
            # C_out is usually `C * num_nodes_per_cell` because of concat operator.
            cell_builder = CellBuilder(op_candidates, C_pprev, C_prev, C_curr,
                                       num_nodes_per_cell, merge_op,
                                       stage_idx > 0, last_cell_reduce)
            stage: Union[NDSStage, nn.Sequential] = NDSStage(
                cell_builder, num_cells_per_stage[stage_idx])

            if isinstance(stage, NDSStage):
                stage.estimated_out_channels_prev = cast(int, C_prev)
                stage.estimated_out_channels = cast(
                    int, C_curr * num_nodes_per_cell)
                stage.downsampling = stage_idx > 0

            self.stages.append(stage)

            # NOTE: output_node_indices will be computed on-the-fly in trial code.
            # When constructing model space, it's just all the nodes in the cell,
            # which happens to be the case of one-shot supernet.

            # C_pprev is output channel number of last second cell among all the cells already built.
            if len(stage) > 1:
                # Contains more than one cell
                C_pprev = len(cast(nn.Cell,
                                   stage[-2]).output_node_indices) * C_curr
            else:
                # Look up in the out channels of last stage.
                C_pprev = C_prev

            # This was originally,
            # C_prev = num_nodes_per_cell * C_curr.
            # but due to loose end, it becomes,
            C_prev = len(cast(nn.Cell, stage[-1]).output_node_indices) * C_curr

            # Useful in aligning the pprev and prev cell.
            last_cell_reduce = cell_builder.last_cell_reduce

            if stage_idx == 2:
                C_to_auxiliary = C_prev

        if auxiliary_loss:
            assert isinstance(
                self.stages[2], nn.Sequential
            ), 'Auxiliary loss can only be enabled in retrain mode.'
            self.stages[2] = SequentialBreakdown(
                cast(nn.Sequential, self.stages[2]))
            self.auxiliary_head = AuxiliaryHead(
                C_to_auxiliary, self.num_labels,
                dataset=self.dataset)  # type: ignore

        self.global_pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = nn.Linear(cast(int, C_prev), self.num_labels)
Exemple #7
0
    def __init__(self,
                 num_labels: int = 1000,
                 channel_search: bool = False,
                 affine: bool = False):
        super().__init__()

        self.num_labels = num_labels
        self.channel_search = channel_search
        self.affine = affine

        # the block number in each stage. 4 stages in total. 20 blocks in total.
        self.stage_repeats = [4, 4, 8, 4]

        # output channels for all stages, including the very first layer and the very last layer
        self.stage_out_channels = [-1, 16, 64, 160, 320, 640, 1024]

        # building first layer
        out_channels = self.stage_out_channels[1]
        self.first_conv = nn.Sequential(
            nn.Conv2d(3, out_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
        )

        self.features = []

        global_block_idx = 0
        for stage_idx, num_repeat in enumerate(self.stage_repeats):
            for block_idx in range(num_repeat):
                # count global index to give names to choices
                global_block_idx += 1

                # get ready for input and output
                in_channels = out_channels
                out_channels = self.stage_out_channels[stage_idx + 2]
                stride = 2 if block_idx == 0 else 1

                # mid channels can be searched
                base_mid_channels = out_channels // 2
                if self.channel_search:
                    k_choice_list = [
                        int(base_mid_channels * (.2 * k)) for k in range(1, 9)
                    ]
                    mid_channels = nn.ValueChoice(
                        k_choice_list, label=f'channel_{global_block_idx}')
                else:
                    mid_channels = int(base_mid_channels)

                choice_block = nn.LayerChoice(
                    [
                        ShuffleNetBlock(in_channels,
                                        out_channels,
                                        mid_channels=mid_channels,
                                        kernel_size=3,
                                        stride=stride,
                                        affine=affine),
                        ShuffleNetBlock(in_channels,
                                        out_channels,
                                        mid_channels=mid_channels,
                                        kernel_size=5,
                                        stride=stride,
                                        affine=affine),
                        ShuffleNetBlock(in_channels,
                                        out_channels,
                                        mid_channels=mid_channels,
                                        kernel_size=7,
                                        stride=stride,
                                        affine=affine),
                        ShuffleXceptionBlock(in_channels,
                                             out_channels,
                                             mid_channels=mid_channels,
                                             stride=stride,
                                             affine=affine)
                    ],
                    label=f'layer_{global_block_idx}')
                self.features.append(choice_block)

        self.features = nn.Sequential(*self.features)

        # final layers
        last_conv_channels = self.stage_out_channels[-1]
        self.conv_last = nn.Sequential(
            nn.Conv2d(out_channels, last_conv_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(last_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self.globalpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Sequential(
            nn.Linear(last_conv_channels, num_labels, bias=False), )

        self._initialize_weights()
Exemple #8
0
    def __init__(self,
                 num_labels: int = 1000,
                 base_widths: Tuple[int, ...] = (16, 16, 32, 64, 128, 256, 512,
                                                 1024),
                 width_multipliers: Tuple[float, ...] = (0.5, 0.625, 0.75, 1.0,
                                                         1.25, 1.5, 2.0),
                 expand_ratios: Tuple[int, ...] = (1, 2, 3, 4, 5, 6),
                 dropout_rate: float = 0.2,
                 bn_eps: float = 1e-3,
                 bn_momentum: float = 0.1):
        super().__init__()

        self.widths = [
            nn.ValueChoice([
                make_divisible(base_width * mult, 8)
                for mult in width_multipliers
            ],
                           label=f'width_{i}')
            for i, base_width in enumerate(base_widths)
        ]
        self.expand_ratios = expand_ratios

        blocks = [
            # Stem
            ConvBNReLU(3,
                       self.widths[0],
                       nn.ValueChoice([3, 5], label='ks_0'),
                       stride=2,
                       activation_layer=h_swish),
            SeparableConv(self.widths[0],
                          self.widths[0],
                          activation_layer=nn.ReLU),
        ]

        # counting for kernel sizes and expand ratios
        self.layer_count = 2

        blocks += [
            # Body
            self._make_stage(1, self.widths[0], self.widths[1], False, 2,
                             nn.ReLU),
            self._make_stage(2, self.widths[1], self.widths[2], True, 2,
                             nn.ReLU),
            self._make_stage(1, self.widths[2], self.widths[3], False, 2,
                             h_swish),
            self._make_stage(1, self.widths[3], self.widths[4], True, 1,
                             h_swish),
            self._make_stage(1, self.widths[4], self.widths[5], True, 2,
                             h_swish),
        ]

        # Head
        blocks += [
            ConvBNReLU(self.widths[5],
                       self.widths[6],
                       1,
                       1,
                       activation_layer=h_swish),
            nn.AdaptiveAvgPool2d(1),
            ConvBNReLU(self.widths[6],
                       self.widths[7],
                       1,
                       1,
                       norm_layer=nn.Identity,
                       activation_layer=h_swish),
        ]

        self.blocks = nn.Sequential(*blocks)

        self.classifier = nn.Sequential(
            nn.Dropout(dropout_rate),
            nn.Linear(self.widths[7], num_labels),
        )

        reset_parameters(self, bn_momentum=bn_momentum, bn_eps=bn_eps)
Exemple #9
0
    def __init__(self,
                 op_candidates: List[str],
                 merge_op: Literal['all', 'loose_end'] = 'all',
                 num_nodes_per_cell: int = 4,
                 width: Union[Tuple[int], int] = 16,
                 num_cells: Union[Tuple[int], int] = 20,
                 dataset: Literal['cifar', 'imagenet'] = 'imagenet',
                 auxiliary_loss: bool = False):
        super().__init__()

        self.dataset = dataset
        self.num_labels = 10 if dataset == 'cifar' else 1000
        self.auxiliary_loss = auxiliary_loss

        # preprocess the specified width and depth
        if isinstance(width, Iterable):
            C = nn.ValueChoice(list(width), label='width')
        else:
            C = width

        if isinstance(num_cells, Iterable):
            num_cells = nn.ValueChoice(list(num_cells), label='depth')
        num_cells_per_stage = [
            i * num_cells // 3 - (i - 1) * num_cells // 3 for i in range(3)
        ]

        # auxiliary head is different for network targetted at different datasets
        if dataset == 'imagenet':
            self.stem0 = nn.Sequential(
                nn.Conv2d(3,
                          C // 2,
                          kernel_size=3,
                          stride=2,
                          padding=1,
                          bias=False),
                nn.BatchNorm2d(C // 2),
                nn.ReLU(inplace=True),
                nn.Conv2d(C // 2, C, 3, stride=2, padding=1, bias=False),
                nn.BatchNorm2d(C),
            )
            self.stem1 = nn.Sequential(
                nn.ReLU(inplace=True),
                nn.Conv2d(C, C, 3, stride=2, padding=1, bias=False),
                nn.BatchNorm2d(C),
            )
            C_pprev = C_prev = C_curr = C
            last_cell_reduce = True
        elif dataset == 'cifar':
            self.stem = nn.Sequential(
                nn.Conv2d(3, 3 * C, 3, padding=1, bias=False),
                nn.BatchNorm2d(3 * C))
            C_pprev = C_prev = 3 * C
            C_curr = C
            last_cell_reduce = False

        self.stages = nn.ModuleList()
        for stage_idx in range(3):
            if stage_idx > 0:
                C_curr *= 2
            # For a stage, we get C_in, C_curr, and C_out.
            # C_in is only used in the first cell.
            # C_curr is number of channels for each operator in current stage.
            # C_out is usually `C * num_nodes_per_cell` because of concat operator.
            cell_builder = CellBuilder(op_candidates, C_pprev, C_prev, C_curr,
                                       num_nodes_per_cell, merge_op,
                                       stage_idx > 0, last_cell_reduce)
            stage = nn.Repeat(cell_builder, num_cells_per_stage[stage_idx])
            self.stages.append(stage)

            # C_pprev is output channel number of last second cell among all the cells already built.
            if len(stage) > 1:
                # Contains more than one cell
                C_pprev = len(stage[-2].output_node_indices) * C_curr
            else:
                # Look up in the out channels of last stage.
                C_pprev = C_prev

            # This was originally,
            # C_prev = num_nodes_per_cell * C_curr.
            # but due to loose end, it becomes,
            C_prev = len(stage[-1].output_node_indices) * C_curr

            # Useful in aligning the pprev and prev cell.
            last_cell_reduce = cell_builder.last_cell_reduce

            if stage_idx == 2:
                C_to_auxiliary = C_prev

        if auxiliary_loss:
            assert isinstance(
                self.stages[2], nn.Sequential
            ), 'Auxiliary loss can only be enabled in retrain mode.'
            self.stages[2] = SequentialBreakdown(self.stages[2])
            self.auxiliary_head = AuxiliaryHead(C_to_auxiliary,
                                                self.num_labels,
                                                dataset=self.dataset)

        self.global_pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = nn.Linear(C_prev, self.num_labels)
Exemple #10
0
    def __init__(self,
                 width_stages=[24,40,80,96,192,320],
                 n_cell_stages=[4,4,4,4,4,1],
                 stride_stages=[2,2,2,1,2,1],
                 width_mult=1, n_classes=1000,
                 dropout_rate=0, bn_param=(0.1, 1e-3)):
        """
        Parameters
        ----------
        width_stages: str
            width (output channels) of each cell stage in the block
        n_cell_stages: str
            number of cells in each cell stage
        stride_strages: str
            stride of each cell stage in the block
        width_mult : int
            the scale factor of width
        """
        super(SearchMobileNet, self).__init__()

        input_channel = putils.make_divisible(32 * width_mult, 8)
        first_cell_width = putils.make_divisible(16 * width_mult, 8)
        for i in range(len(width_stages)):
            width_stages[i] = putils.make_divisible(width_stages[i] * width_mult, 8)
        # first conv
        first_conv = ops.ConvLayer(3, input_channel, kernel_size=3, stride=2, use_bn=True, act_func='relu6', ops_order='weight_bn_act')
        # first block
        first_block_conv = ops.OPS['3x3_MBConv1'](input_channel, first_cell_width, 1)
        first_block = first_block_conv

        input_channel = first_cell_width

        blocks = [first_block]

        stage_cnt = 0
        for width, n_cell, s in zip(width_stages, n_cell_stages, stride_stages):
            for i in range(n_cell):
                if i == 0:
                    stride = s
                else:
                    stride = 1
                op_candidates = [ops.OPS['3x3_MBConv3'](input_channel, width, stride),
                                 ops.OPS['3x3_MBConv6'](input_channel, width, stride),
                                 ops.OPS['5x5_MBConv3'](input_channel, width, stride),
                                 ops.OPS['5x5_MBConv6'](input_channel, width, stride),
                                 ops.OPS['7x7_MBConv3'](input_channel, width, stride),
                                 ops.OPS['7x7_MBConv6'](input_channel, width, stride)]
                if stride == 1 and input_channel == width:
                    # if it is not the first one
                    op_candidates += [ops.OPS['Zero'](input_channel, width, stride)]
                    conv_op = LayerChoice(op_candidates, label="s{}_c{}".format(stage_cnt, i))
                else:
                    conv_op = LayerChoice(op_candidates, label="s{}_c{}".format(stage_cnt, i))
                # shortcut
                if stride == 1 and input_channel == width:
                    # if not first cell
                    shortcut = ops.IdentityLayer(input_channel, input_channel)
                else:
                    shortcut = None
                inverted_residual_block = ops.MobileInvertedResidualBlock(conv_op, shortcut, op_candidates)
                blocks.append(inverted_residual_block)
                input_channel = width
            stage_cnt += 1

        # feature mix layer
        last_channel = putils.make_devisible(1280 * width_mult, 8) if width_mult > 1.0 else 1280
        feature_mix_layer = ops.ConvLayer(input_channel, last_channel, kernel_size=1, use_bn=True, act_func='relu6', ops_order='weight_bn_act', )
        classifier = ops.LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate)

        self.first_conv = first_conv
        self.blocks = nn.ModuleList(blocks)
        self.feature_mix_layer = feature_mix_layer
        self.global_avg_pooling = nn.AdaptiveAvgPool2d(1)
        self.classifier = classifier

        # set bn param
        self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])