Exemple #1
0
    def __unary(self, tcontext, funcname):
        '''
        unary = ("&" | "*") unary | ("+" | "-")? term
        '''
        token = tcontext.consume_symbol('&')
        if token:
            return NodeFactory.create_address_node(
                self.__unary(tcontext, funcname))

        token = tcontext.consume_symbol('*')
        if token:
            return NodeFactory.create_dereference_node(
                self.__unary(tcontext, funcname))

        token = tcontext.consume_symbol('+')
        if token:
            return self.__term(tcontext, funcname)

        token = tcontext.consume_symbol('-')
        if token:
            return NodeFactory.create_ope_node(NodeTypes.SUB,
                                               NodeFactory.create_num_node(0),
                                               self.__term(tcontext, funcname))

        return self.__term(tcontext, funcname)
Exemple #2
0
    def solve(self, problem, all_solutions=False):
        self.reset()
        self.problem = problem
        # Generate the initial (root) node
        node_factory = NodeFactory(False, True)
        self.max_frontier_node_count = 0
        node = node_factory.make_node(problem.initial_state)

        # For efficiency, check if node is goal state BEFORE putting on Q
        if problem.is_goal(node.state):
            self.solution = node
            self.total_node_count = 1
            if all_solutions == False:  #added
                return node
            else:
                self.problem.pretty_print(self.solution.state)
                counter = counter + 1
        # Start the frontier Q by adding the root
        frontier = deque()
        frontier.append(node)

        loops = 0

        # Search tree til nothing left to explore (i.e. frontier is empty)
        # OR a solution is found
        while len(frontier) > 0:

            node = frontier.popleft()
            #POTENTIAL IMPROVEMENT: Use generator
            for child in node_factory.expand(node, problem):
                if problem.is_goal(child.state):
                    if self.verbose:
                        print("Max Frontier Count: ",
                              self.max_frontier_node_count)
                    self.solution = child

                    # added for all_solutions being true, print after one is found. If all_solutions
                    # is false, just return child
                    if all_solutions == True:
                        self.problem.pretty_print(self.solution.state)
                    else:
                        self.total_node_count = node_factory.node_count
                        return child

                frontier.append(child)
                if len(frontier) > self.max_frontier_node_count:
                    self.max_frontier_node_count = len(frontier)

        # added for all_solutions being true, will return the last child, however, in execute
        # a case for this is changed so duplicate solutions won't be printed.
        if all_solutions == True:
            self.total_node_count = node_factory.node_count
            return child

        self.solution = None
        self.total_node_count = node_factory.node_count
        return None
Exemple #3
0
    def solve(self, problem, path=True, all_solutions=False):
        self.reset()
        self.problem = problem

        # Generate the initial (root) node
        node_factory = NodeFactory(verbose=self.verbose, record_parent=path)
        self.max_frontier_node_count = 0
        node = node_factory.make_node(problem.initial_state)

        # For efficiency, check if node is goal state BEFORE putting on Q
        if problem.is_goal(node.state):
            self.solution.append(node)
            self.total_node_count = 1
            if not all_solutions:
                return self.solution

        # Start the frontier Q by adding the root
        frontier = deque()
        frontier.append(node)
        self.visited.append(node.state)

        # Select a node from the frontier (using the  til nothing left to explore (i.e. frontier is empty)
        # OR a solution is found
        while len(frontier) > 0:
            #print(frontier)
            # vvvvvvvvvvvvvvvvvvvvvvvvv    add code block for if and elif:

            #added
            #If BFS, pop front because it is a queue.
            #If DFS, pop back because it is a stack.
            if self.strategy == "BFS":
                node = frontier.popleft()
            elif self.strategy == "DFS":
                node = frontier.pop()

            for child in self.valid_children(node, problem, node_factory):
                if child.depth > self.max_depth:
                    self.max_depth = child.depth
                if problem.is_goal(child.state):
                    if self.verbose:
                        print("Max Frontier Count: ",
                              self.max_frontier_node_count)
                    self.solution.append(child)
                    self.total_node_count = node_factory.node_count
                    if not all_solutions:
                        return child
                frontier.append(child)
                if len(frontier) > self.max_frontier_node_count:
                    self.max_frontier_node_count = len(frontier)
        self.total_node_count = node_factory.node_count
        if self.solution == []:
            self.solution = None
        return self.solution
Exemple #4
0
    def BuildSampleXorNetwork(self):

        """
        Builds a simple two input, one output, two node hidden layer network in
        order learn the XOR function.  This network is the "simplest" net that
        can be built to do something "useful".  It's intended to be used for
        testing and debugging the training from end to end.
        """
        temp = [
            {
                'transfer_function': 'linear'
                , 'number_of_nodes': 2
                , 'layerName': 'input'
            }
            , {
                'transfer_function': 'sigmoidal'
                , 'number_of_nodes': 2
                , 'layerName': 'hidden layer'
            }
            , {
                'transfer_function': 'linear'
                , 'number_of_nodes': 1
                , 'layerName': 'output'
            }]
        """ NodeFactory is a helper function for making nodes."""
        nf = NodeFactory()
        for x in temp:
            """
            build layers
            """
            # this is a bit funky, NodeFactory is called for each
            # iteration though the loop and it returns a node.  So in the
            # end we have a list of layers lists, with each layer list
            # being composed of some Node type.
            self.layerList.append(Layer(
                x['layerName'], 1, [nf.makeNode(x['transfer_function']) for y
                                    in range(0, x['number_of_nodes'])], True))

        # This network is for testing.  To make the unit testing easier we
        # just set the seed to get the same sequence of random numbers each
        # time.
        np.random.seed(42)

        for idx, x in enumerate(self.layerList[1:]):
            """
            create random weights matrices based on layer definitions
            """
            rows = len(self.layerList[idx].NodeList)
            cols = len(x.NodeList)
            temp = Weight(rows, cols)
            self.weightList.append(temp)
Exemple #5
0
 def __init__(self, layer_name, layer_number, node_list, has_bias):
     self.layerName = layer_name
     self.layerNumber = layer_number
     self.NodeList = node_list
     self.hasBias = has_bias
     if has_bias:
         nf = NodeFactory()
         self.NodeList.append(nf.makeNode('bias'))
     self.output = matrix(zeros((1, len(self.NodeList))))
     if has_bias:
         self.gradient = matrix(zeros((1, len(self.NodeList) - 1 )))
         self.output_derivative = matrix(zeros((1, len(self.NodeList) - 1)))
     else:
         self.gradient = matrix(zeros((1, len(self.NodeList))))
         self.output_derivative = matrix(zeros((1, len(self.NodeList))))
Exemple #6
0
    def __func(self, tcontext):
        '''
        func = "int" ident "(" ("int" ident)* ")" "{" stmt* "}"
        '''
        tcontext.expect_type()
        funcname = tcontext.expect_ident().text
        tcontext.expect_symbol('(')
        args_order_type = []
        while not tcontext.consume_symbol(')'):
            type_token = tcontext.expect_type()
            ptr_level = 0
            while tcontext.consume_symbol('*'):
                ptr_level += 1
            vtype = self.__get_type_from_typename(type_token.text)
            typeinfo = TypeInfo(vtype, ptr_level)

            arg_token = tcontext.expect_ident()
            order = self.__regist_varname(arg_token.text, funcname, typeinfo)
            args_order_type.append((order, typeinfo))
            if not tcontext.consume_symbol(','):
                tcontext.expect_symbol(')')
                break
        if tcontext.current.text != '{':
            error('関数の"{"がありません')
        return NodeFactory.create_func_node(funcname, args_order_type,
                                            self.__stmt(tcontext, funcname))
Exemple #7
0
    def __process(self, queue=None, **kwargs):

        # build node
        key = kwargs.pop('key', None)
        val = kwargs.pop('val', None)
        path = kwargs.pop('path', '') or ''
        converted = NodeFactory.convert(key, val, path)
        node = converted.__node__

        # set parent
        parent = kwargs.pop('parent', None)
        if parent:
            if self.config.structure is 'Tree':
                node.add_parent(parent)
            elif self.config.structure is 'Graph':
                node.add_neighbor(parent)

        # exit if we've visited this node enough
        if self.config.node_visit_limit != -1 and node.encountered > self.config.node_visit_limit:
            return
        node.processed += 1

        # match and run callbacks
        self.__exec_callbacks(node, 0)

        # object processing
        if node.container == ContainerType.dict:
            for k, v in node.val.iteritems():
                process_kwargs = {
                    'key': k,
                    'val': v,
                    'path': path + '.' + k,
                    'parent': node
                }
                if self.config.traversal_mode is 'breadth':
                    queue.append(**process_kwargs)
                else:
                    child = self.__process(**process_kwargs)
                    node.val[k] = child

        # list processing
        elif node.container == ContainerType.list:
            for i, item in enumerate(node.val):
                process_kwargs = {
                    'key': None,
                    'val': item,
                    'path': path + '.' + str(i),
                    'parent': node
                }
                if self.config.traversal_mode is 'breadth':
                    queue.append(**process_kwargs)
                else:
                    child = self.__process(**process_kwargs)
                    node.val[i] = child

        self.__exec_callbacks(node, 1)

        return node.val
Exemple #8
0
    def __process(self, queue=None, **kwargs):
       
        # build node
        key = kwargs.pop('key', None)
        val = kwargs.pop('val', None)
        path = kwargs.pop('path', '') or ''  
        converted = NodeFactory.convert(key, val, path)
        node = converted.__node__

        # set parent
        parent = kwargs.pop('parent', None)
        if parent:
            if self.config.structure is 'Tree':
                node.add_parent(parent)
            elif self.config.structure is 'Graph':
                node.add_neighbor(parent)

        # exit if we've visited this node enough
        if self.config.node_visit_limit != -1 and node.encountered > self.config.node_visit_limit:
            return            
        node.processed += 1

        # match and run callbacks
        self.__exec_callbacks(node, 0)

        # object processing
        if node.container == ContainerType.dict:
            for k, v in node.val.iteritems():
                process_kwargs = {
                    'key': k,
                    'val': v,
                    'path': path + '.' + k,
                    'parent': node
                }
                if self.config.traversal_mode is 'breadth':
                    queue.append(**process_kwargs)
                else:
                    child = self.__process(**process_kwargs)
                    node.val[k] = child

        # list processing
        elif node.container == ContainerType.list:
            for i, item in enumerate(node.val):
                process_kwargs = {
                    'key': None,
                    'val': item,
                    'path': path + '.' + str(i),
                    'parent': node
                }
                if self.config.traversal_mode is 'breadth':
                    queue.append(**process_kwargs)
                else:
                    child = self.__process(**process_kwargs)
                    node.val[i] = child

        self.__exec_callbacks(node, 1)

        return node.val
Exemple #9
0
    def solve(self, problem):
        self.problem = problem
        # Not a great name for it, but Node is a useful structure for annealing
        node_factory = NodeFactory(verbose=self.verbose)
        node = node_factory.make_node(problem.get_initial_state())
        node.value = problem.apply_objective_function(node.state)
        # at each iteration, self.solution will contain the best seen so far
        self.solution = [node]
        if self.verbose:
            print("Initial state: ", problem.pretty_print(node))
            print("Evaluation: ", node.value)
        if node.value == 0:
            self.total_node_count = 1
            return self.solution

        while self.temperature > self.end_temp:
            self.steps = self.steps + 1
            # get a neighbor and decide to change to that state
            next_node = node_factory.make_node(
                problem.get_random_neighbor(node.state))
            next_node.value = problem.apply_objective_function(next_node.state)
            self.value_data.append(next_node.value)
            if next_node.value == 0:
                self.solution = [node]
                self.total_node_count = node_factory.node_count
                return self.solution
            if next_node.value <= node.value:
                node = next_node
                self.moves_to_better += 1
                if node.value < self.solution[0].value:
                    self.solution = [node]
            else:
                if random.uniform(
                        0, 1) <= self.calculate_probability(node.value -
                                                            next_node.value):
                    node = next_node
                    self.moves_to_worse += 1
            self.adjust_temperature()

        self.total_node_count = node_factory.node_count
        self.elapsed_time = self.calculate_elapsed_time()
        if self.verbose:
            print("Elapsed Time: %sms" % (str(self.elapsed_time)))

        return self.solution
Exemple #10
0
 def __assign(self, tcontext, funcname):
     '''
     assign = equality ("=" assign)?
     '''
     node = self.__equality(tcontext, funcname)
     if tcontext.consume_symbol('='):
         node = NodeFactory.create_assign_node(
             node, self.__assign(tcontext, funcname))
     return node
Exemple #11
0
 def run(self):
     sync = Sync([])
     nf = NodeFactory()
     store = LocalStoreManager()
     # Get data from metadata db
     start = self.start.value.replace('~',
                                      '!')  # Both characters are allowed
     query = "select identifier, location, node from nodes where identifier like '%s%%' order by identifier" % start
     res = store.query(query)
     # Check through nodes under starting point
     for record in res:
         vosid = record['identifier']
         location = record['location']
         # Get file metadata
         meta = sync.getMetadata(location[7:])  # Remove file:// scheme
         # File existence
         if len(meta) == 0:
             print("The file %s is missing" % location)
             if self.fix.value:  # Resolve by deleting record
                 store.delete_node(vosid)
                 continue
         node = nf.get_node(etree.fromstring(record['node']))
         # File size
         if cfg.LENGTH not in node.properties:
             print("The file size is missing for: %s" % vosid)
         elif node.properties[cfg.LENGTH] != meta['size']:
             print("The sizes for %s and %s do not match" %
                   (vosid, location))
             if self.fix.value:
                 node.properties[cfg.LENGTH] = meta['size']
                 store.update_node(vosid, node, vosid)
         # Date
         if relativedelta(
                 parser.parse(node.properties[cfg.DATE]) -
                 utc.localize(parser.parse(meta['date']))
         ).seconds > 1:  # Current tolerance is 1s.
             print(
                 "The dates for %s and %s do not match: %s %s" %
                 (vosid, location, node.properties[cfg.DATE], meta['date']))
             if self.fix.value:
                 node.properties[cfg.DATE] = meta['size']
                 store.update_node(vosid, node, vosid)
Exemple #12
0
 def __parse_common_func(self, tcontext, funcname, map_, next_func):
     node = next_func(tcontext, funcname)
     while True:
         for k, v in map_.items():
             token = tcontext.consume_symbol(k)
             if token:
                 node = NodeFactory.create_ope_node(
                     v, node, next_func(tcontext, funcname))
                 break
         else:
             return node
Exemple #13
0
    def __term(self, tcontext, funcname):
        '''
        term = "(" expr ")" | "int" "*"* ident | ident ("(" expr* ")")? | num
        '''
        token = tcontext.consume_symbol('(')
        if token:
            node = self.__expr(tcontext, funcname)
            tcontext.expect_symbol(')')
            return node

        token = tcontext.consume_type()
        if token:
            ptr_level = 0
            while tcontext.consume_symbol('*'):
                ptr_level += 1
            vtype = self.__get_type_from_typename(token.text)
            typeinfo = TypeInfo(vtype, ptr_level)
            name = tcontext.expect_ident().text
            order = self.__regist_varname(name, funcname, typeinfo)
            node = NodeFactory.create_ident_node(order, typeinfo)
            return node

        token = tcontext.consume_ident()
        if token:
            name = token.text
            if tcontext.consume_symbol('('):
                args = []
                while not tcontext.consume_symbol(')'):
                    args.append(self.__expr(tcontext, funcname))
                    if not tcontext.consume_symbol(','):
                        tcontext.expect_symbol(')')
                        break
                node = NodeFactory.create_call_node(name, args)
            else:
                order, typeinfo = self.__get_order_and_type_from_varname(
                    name, funcname)
                node = NodeFactory.create_ident_node(order, typeinfo)
            return node

        token_num = tcontext.expect_num()
        return NodeFactory.create_num_node(token_num.value)
Exemple #14
0
    def BuildNetworkFromJSON(self, inputFile):
        """
        Reads in a JSON formatted file and builds the network defined in the JSON
        A Neural Network is nothing more than lists of Nodes, and arrays of Weights                self.weight_update()

        """

        with open(inputFile) as nd:
            nn = nd.read()
            struct = json.loads(nn)

        for idx, x in enumerate(struct['layers']):
            """
            build layers
            """
            # this is a bit funky, NodeFactory is called for each
            # iteration though the loop and it returns a node.  So in the
            # end we have a list of layers, with each layer in the list                self.weight_update()

            # being composed of a list of Nodes.
            # @todo allow for heterogeneous lists of nodes, i.e. not all needs need
            # to have the same transfer function
            nf = NodeFactory()
            node_list = [nf.makeNode(x['transfer_function']) for y
                         in range(0, x['number_of_nodes'])]

            self.layerList.append(Layer(
                x['layerName'], idx, node_list, True if x['has_bias'] == 1 else False))


        x_minus_one = len(self.layerList[0].NodeList)
        for x in self.layerList[1:]:
            """
            create random weights matrices based on layer definitions.  The minus one on the second
            argument assumes that each layer has an extra bias node.
            """
            self.weightList.append(Weight(x_minus_one, len(x.NodeList) - (1 if x.hasBias else 0)))
            x_minus_one = len(x.NodeList)
Exemple #15
0
 def __stmt(self, tcontext, funcname):
     '''
     stmt = "{" stmt* "}"
          | "if" "(" expr ")" stmt ("else" stmt)?
          | "while" "(" expr ")" stmt
          | "for" "(" expr? ";" expr? ";" expr? ")" stmt
          | "return" expr? ";"
          | expr ";"
     '''
     if tcontext.consume_symbol('{'):
         stmts = []
         while not tcontext.consume_symbol('}'):
             if tcontext.is_empty():
                 error('ブロックの"}"がありません')
             stmts.append(self.__stmt(tcontext, funcname))
         node = NodeFactory.create_block_node(stmts)
     elif tcontext.consume_if():
         tcontext.expect_symbol('(')
         expr = self.__expr(tcontext, funcname)
         tcontext.expect_symbol(')')
         stmt = self.__stmt(tcontext, funcname)
         else_stmt = self.__stmt(
             tcontext, funcname) if tcontext.consume_else() else None
         if else_stmt:
             node = NodeFactory.create_if_else_node(expr, stmt, else_stmt)
         else:
             node = NodeFactory.create_if_node(expr, stmt)
     elif tcontext.consume_while():
         tcontext.expect_symbol('(')
         expr = self.__expr(tcontext, funcname)
         tcontext.expect_symbol(')')
         stmt = self.__stmt(tcontext, funcname)
         node = NodeFactory.create_while_node(expr, stmt)
     elif tcontext.consume_for():
         tcontext.expect_symbol('(')
         expr1 = None if tcontext.consume_symbol(';') else self.__expr(
             tcontext, funcname)
         if expr1:
             tcontext.expect_symbol(';')
         expr2 = None if tcontext.consume_symbol(';') else self.__expr(
             tcontext, funcname)
         if expr2:
             tcontext.expect_symbol(';')
         else:
             expr2 = NodeFactory.create_for_infinite_dummy_node()
         expr3 = None if tcontext.consume_symbol(')') else self.__expr(
             tcontext, funcname)
         if expr3:
             tcontext.expect_symbol(')')
         stmt = self.__stmt(tcontext, funcname)
         node = NodeFactory.create_for_node(expr1, expr2, expr3, stmt)
     elif tcontext.consume_return():
         if tcontext.consume_symbol(';'):
             expr = None
         else:
             expr = self.__expr(tcontext, funcname)
             tcontext.expect_symbol(';')
         node = NodeFactory.create_return_node(expr)
     else:
         node = self.__expr(tcontext, funcname)
         tcontext.expect_symbol(';')
     return node
Exemple #16
0
    def solve(self, problem, path=True, all_solutions=False):
        self.reset()
        self.problem = problem

        # Generate the initial (root) node
        node_factory = NodeFactory(verbose=self.verbose, record_parent=path)
        self.max_frontier_node_count = 0
        node = node_factory.make_node(problem.initial_state)

        # For efficiency, check if node is goal state BEFORE putting on Q
        if problem.is_goal(node.state):
            self.solution.append(node)
            self.total_node_count = 1
            if not all_solutions:
                return self.solution

        # Start the frontier Q by adding the root
        frontier = deque()
        frontier.append(node)
        #
        if self.dupstrat == "simple_list":
            self.visited.append(node.state)
        if self.dupstrat == "advanced_list":
            self.visited.append(node)

        # Select a node from the frontier (using the  til nothing left to explore (i.e. frontier is empty)
        # OR a solution is found
        while len(frontier) > 0:
            while len(frontier) > 0:
                self.steps = self.steps + 1
                #print(self.max_depth)
                #print(frontier)
                # vvvvvvvvvvvvvvvvvvvvvvvvv    add code block for if and elif:
                #---------------------------------------------------------------------------------------
                if self.strategy == "BFS":
                    node = frontier.popleft()
                elif self.strategy == "DFS":
                    node = frontier.pop()
                elif self.strategy == "IDDFS":
                    node = frontier.pop()
                for child in self.valid_children(node, problem, node_factory):
                    if self.strategy == "IDDFS":
                        if child.depth > self.max_depth:
                            self.max_depth = child.depth
                        if problem.is_goal(child.state):
                            if self.verbose:
                                print("Max Frontier Count: ",
                                      self.max_frontier_node_count)
                            self.solution.append(child)
                            self.total_node_count = node_factory.node_count
                            if not all_solutions:
                                return child
                        if child.depth <= self.id_depth:
                            frontier.append(child)
                        if len(frontier) > self.max_frontier_node_count:
                            self.max_frontier_node_count = len(frontier)
                    else:
                        if child.depth > self.max_depth:
                            self.max_depth = child.depth
                        if problem.is_goal(child.state):
                            if self.verbose:
                                print("Max Frontier Count: ",
                                      self.max_frontier_node_count)
                            self.solution.append(child)
                            self.total_node_count = node_factory.node_count
                            if not all_solutions:
                                return child
                        frontier.append(child)
                        if len(frontier) > self.max_frontier_node_count:
                            self.max_frontier_node_count = len(frontier)
            if self.strategy == "IDDFS" and self.id_depth < self.max_id_depth:
                self.id_depth = self.id_depth + 1
                #print("Inc depth limit: ",self.id_depth)
                node = node_factory.make_node(problem.initial_state)
                frontier.append(node)
                self.visited = []
            else:
                self.total_node_count = node_factory.node_count
                if self.solution == []:
                    self.solution = None
                return self.solution
Exemple #17
0
#Import python ledger object, data type to be updated to allow easier modifictaion
ledger = pickle.load(open(ledger_dir, "rb"))

#Import secret key
seed = pickle.load(open(seed_dir, "rb"))
signing_key = nacl.signing.SigningKey(seed.encode("ascii"))
verify_key = signing_key.verify_key
pubkey = verify_key.encode(encoder=nacl.encoding.HexEncoder)

print(myIP)
print(pubkey)

#Enter address for node block rewards
my_address = pubkey

factory = NodeFactory(reactor, ledger, my_address, signing_key, PEER_PORT,
                      "myIP", ns)
reactor.callLater(5, factory.startPOW)

stdio.StandardIO(factory.buildCommandProtocol())

if args.peer:
    reactor.connectTCP(BOOTSTRAP_ADDRESS, PEER_PORT, factory)

# def maintainPeerList(factory):
#     """ Looping call function for maintaing a list of peers """
#     if factory.peerListSize() < ns.PEER_LIST_SIZE:
#         factory.requestPeers()
#         print("maintain")

# lc = LoopingCall(maintainPeerList, factory)
# # reactor.callLater(5, lc)
    def solve(self, problem, path=True, all_solutions=False):
        self.reset()
        self.problem = problem

        # Generate the initial (root) node
        node_factory = NodeFactory(verbose=self.verbose, record_parent=path )
        self.max_frontier_node_count = 0
        
        if self.strategy == "DL_DFS":
            print("Depth limit: ", self.max_depth)
            result = self.depth_limited_search(problem, node_factory, self.max_depth)
            if result == 'cutoff':
                print("No solution found")
            return result

        if self.verbose:
            print("Searching nodes")

        node = node_factory.make_node( problem.initial_state )
        # if self.strategy == "BFS" and self.tree == False:
        #     return BFS_Graph.breadth_first_graph_search(self, problem, node_factory, all_solutions)

        # For efficiency, check if node is goal state BEFORE putting on Q
        if problem.is_goal( node.state ):
            self.solution.append(node)
            self.total_node_count = 1
            if not all_solutions:
                return self.solution

        # Start the frontier Q by adding the root
        frontier=deque()
        frontier.append(node)
        self.visited.append(node.state)

        # Select a node from the frontier (using the  til nothing left to explore (i.e. frontier is empty)
        # OR a solution is found
        while len(frontier) > 0:
            #print(frontier)
            # vvvvvvvvvvvvvvvvvvvvvvvvv    add code block for if and elif:
            if self.strategy=="BFS":
                node = frontier.popleft()
            elif self.strategy=="DFS":
                node = frontier.pop()

            for child in self.valid_children(node, problem, node_factory):
                if child.depth > self.max_depth:
                    self.max_depth = child.depth
                if problem.is_goal( child.state ):
                    if self.verbose:
                        print("")
                        print("")
                        print("Max Frontier Count: ", self.max_frontier_node_count)
                        print("Visited: ", len(self.visited))
                    self.solution.append(child)
                    self.total_node_count = node_factory.node_count
                    if not all_solutions:
                        return child
                frontier.append(child)
                if len(frontier) > self.max_frontier_node_count:
                    self.max_frontier_node_count = len(frontier)
        self.total_node_count = node_factory.node_count
        if self.solution==[]:
            self.solution = None
        return self.solution