Exemple #1
0
    def minimize(self):
        # Compass requires an initial point
        if self.x0 is None:
            self.x0 = self.domain.l + self.domain._range / 2

        res = minimizeCompass(self.f, bounds=self.domain.bounds, x0=self.x0,
                              niter=self.config.niter,
                              deltatol=self.config.deltatol,
                              deltainit=self.config.deltainit,
                              scaling=self.domain.range,
                              redfactor=self.config.redfactor,
                              errorcontrol=False,
                              funcNinit=30,
                              alpha=0.05,
                              paired=False)
        x0 = res['x']
        res = minimizeCompass(self.f, bounds=self.domain.bounds, x0=x0,
                              niter=self.config.niter,
                              deltatol=self.config.deltatol,
                              deltainit=2*self.config.deltatol,
                              scaling=self.domain.range,
                              redfactor=self.config.redfactor,
                              errorcontrol=True,
                              funcNinit=30,
                              alpha=0.05,
                              paired=False)
Exemple #2
0
def noisy_opt():
    bounds = [[params[i][1], params[i][2]] for i in range(len(params))]
    x0 = np.array([params[i][3] for i in range(len(params))])

    res = minimizeCompass(obj_func_one,
                          bounds=bounds,
                          x0=x0,
                          deltatol=0.1,
                          paired=False)
    print(res)
Exemple #3
0
def optimize(stim_name_list, pin_score_dict):
    score_mat = np.concatenate(tuple(
        [pin_score_dict[n] for n in stim_name_list]),
                               axis=0)

    optimizer_len = np.shape(score_mat)[0]
    bound = [[0, 100] for _ in range(optimizer_len)]
    initial_guess = np.array(
        [np.random.random_sample() * 100 for _ in range(optimizer_len)])
    obj = construct_objective(score_mat)
    print("starting min compas")
    return minimizeCompass(obj,
                           bounds=bound,
                           x0=initial_guess,
                           deltainit=1000,
                           deltatol=0.001,
                           paired=False)
def optimizer_prediction(number_of_layers, material, filename):
    '''
    Optimizes the prediction of the TBR by changing the enrichment fractions and the TBR values and returns the best enrichment configuration for the highest TBR.
    '''
    bounds=()
    x0=[]
    for k in range(number_of_layers):
        bounds=bounds+((0,1),)
        x0.append(0.5)
    bounds = bounds + ((0,2),)
    print(bounds)
    x0.append(1.2)
    print(x0)
    result = minimizeCompass(find_prediction, bounds=bounds, x0=x0, deltatol=0.01, paired=True, disp=False)
    args=[{'number_of_layers' : number_of_layers,'material' : material, 'filename' : filename}]
    
    print(result)
    print(1/result.fun)
Exemple #5
0
def simulate(material, first_wall):
    results = []
    bounds = ()
    x0 = []

    with open(
            'results/result_noisyopt_' + str(material) + '_' +
            str(first_wall) + '.json', 'w') as file_object:
        json.dump([], file_object, indent=2)

    for number_of_layers in [1, 2, 3, 4]:

        with open('results/result_noisyopt_' + str(material) + '_' +
                  str(first_wall) + '.json') as file_object:
            results = json.load(file_object)

        bounds = bounds + ((0, 1), )
        print(bounds)
        x0.append(0.5)
        print(x0)
        result = minimizeCompass(find_tbr,
                                 bounds=bounds,
                                 x0=x0,
                                 deltatol=0.01,
                                 paired=True,
                                 disp=False)
        args = [{'material': material, 'first_wall': first_wall}]
        print(result)
        print(1 / result.fun)
        json_output = {
            "max_tbr": 1 / result.fun,
            "best_enrichment": list(result.x),
            "number_of_layers": len(result.x),
            "breeder_material_name": args[0]['material'],
            "include_first_wall": args[0]['first_wall']
        }
        print('json_output', json_output)
        results.append(json_output)

        with open(
                'results/result_noisyopt_' + str(material) + '_' +
                str(first_wall) + '.json', 'w') as file_object:
            json.dump(results, file_object, indent=2)
def optimize(stim_name_list, subset_list=None, min_bound=0, max_bound=100):
    if isinstance(stim_name_list, str):
        # Single stim optimization.
        stim_name_list = [stim_name_list]
    else:
        # Multi stim optimization.
        # Already a list, nothing to be done to stim_name_list.
        pass

    score_mat = np.concatenate(tuple(
        [pin_score_dict[n] for n in stim_name_list]),
                               axis=0)

    print("SCORE MAT NAN PATCH")
    score_mat = np.where(
        np.isnan(score_mat),
        np.ma.array(score_mat, mask=np.isnan(score_mat)).max(axis=0),
        score_mat)

    # print("SCORE MAT CLIP")
    # score_mat = np.clip(score_mat,0, 100)

    # Use only a subset of the data points if provided.
    # Otherwise, use all of the data points still.
    if subset_list is not None:
        score_mat = np.take(score_mat, subset_list, 1)

    optimizer_len = np.shape(score_mat)[0]
    bound = [[min_bound, max_bound] for _ in range(optimizer_len)]
    np.random.seed(0)
    initial_guess = np.array(
        [np.random.random_sample() * 100 for _ in range(optimizer_len)])
    obj = construct_objective(score_mat)

    return minimizeCompass(obj,
                           bounds=bound,
                           x0=initial_guess,
                           deltainit=100,
                           deltatol=0.01,
                           paired=False), score_mat, obj
Exemple #7
0
def optimize(stim_name_list, pin_score_dict, collapsed_sensitivity_dict):
    score_mat = np.concatenate(tuple(
        [pin_score_dict[n] for n in stim_name_list]),
                               axis=0)
    sensitivity_mat = np.concatenate(tuple(
        [collapsed_sensitivity_dict[n] for n in stim_name_list]),
                                     axis=0)
    optimizer_len = np.shape(score_mat)[0]
    bound = [[0, 100] for _ in range(optimizer_len)]
    initial_guess = np.array(
        [np.random.random_sample() * 100 for _ in range(optimizer_len)])
    obj = construct_objective(score_mat,
                              sensitivity_mat,
                              param_select_vec=[9],
                              obj_comb_vec=[1, 1])

    return minimizeCompass(obj,
                           bounds=bound,
                           x0=initial_guess,
                           deltainit=1000,
                           deltatol=1,
                           paired=False)
Exemple #8
0
            ubMatrix = UpperBounds
            bRangeMatrix = ubMatrix - lbMatrix
            x0 = lbMatrix + np.random.rand(1, nVars) * bRangeMatrix
            #            print(x0[0])

            #            obj_sim = Simulator(ObjectiveFcn(x0[0],nVars,currentStock,currentOrder))
            #            minimizeCompass(obj_sim.simulate, [0, 0], method='BFGS', callback=obj_sim.callback, options={"disp": True})

            res = None
            while res is None:
                try:
                    # connect
                    res = minimizeCompass(
                        ObjectiveFcn,
                        x0=x0[0],
                        deltatol=0.1,
                        paired=False,
                        args=[nVars, currentStock, currentOrder],
                        errorcontrol=False)
                except:
                    print(
                        "\nAn unexcpected error occured. Program will terminate.\nPlease try running again..."
                    )
                    time.sleep(2)
                    sys.exit()

#            print(f"Number of calls to Simulator instance {obj_sim.num_calls}")

            pos = res.x
            iterationsList.append(res.nit)
Exemple #9
0
        logfile_name = start_time.strftime('test_noisyopt_results' +
                                           '%Y%m%d_%H%M%S')
        print("Log file: %s" % logfile_name)
        logfile = open(logfile_name, "w")
        log(logfile, 'Optimization method: noisyopt', stdout=False)
        log(logfile, "0-dB crossing\trmse\t\tExec Time")

        if args.func == 'quad_func':
            bnds = [(-1, 1)]
            x0 = [1.0]
            save = True
            res = minimizeCompass(quad_func,
                                  x0,
                                  args=(save, save),
                                  bounds=bnds,
                                  deltainit=deltainit,
                                  funcNinit=funcNinit,
                                  paired=False,
                                  feps=feps,
                                  disp=False)

            x = np.linspace(-1, 1, 100)
            for i in x:
                y.append(quad_func(i, False))

        elif args.func == 'cavity_step_rmse':
            bnds = [(10000, 70000)]
            x0 = [10000]
            res = minimizeCompass(cavity_step_rmse,
                                  x0,
                                  args=(args.time, args.time),
Exemple #10
0
# This is a minimal usage example for the optimization routines
# see also http://noisyopt.readthedocs.io/en/latest/tutorial.html

import numpy as np
from noisyopt import minimizeCompass, minimizeSPSA


# definition of noisy function to be optimized
def obj(x):
    return (x**2).sum() + 0.1 * np.random.randn()


bounds = [[-3.0, 3.0], [0.5, 5.0]]
x0 = np.array([-2.0, 2.0])
res = minimizeCompass(obj, bounds=bounds, x0=x0, deltatol=0.1, paired=False)
print(res)

res = minimizeSPSA(obj, bounds=bounds, x0=x0, niter=1000, paired=False)
print(res)
Exemple #11
0
    print(Y)
    #readLog()                     ##We are doing nothing here for now
    ##converting polar displacemt to polarization for computing error
    ##Not required for now ; comparing the polar displacements with DFT polar displacements
    #Y[6]=Y[6]*CbyV/((Y[0]+1)*(Y[1]+1)*(Y[2]+1))
    #Y[7]=Y[7]*CbyV/((Y[0]+1)*(Y[1]+1)*(Y[2]+1))
    #Y[8]=Y[8]*CbyV/((Y[0]+1)*(Y[1]+1)*(Y[2]+1))
    ##script to compute error
    totalError = 0
    for i in [0, 1, 2, 8]:
        totalError = totalError + ((Y[i] - Y0[i]) / (Y0[i]))**2
    IT = IT + 1
    return (totalError)


#paramWrite(pInitFName,p0)       ##note required, defined n the function itself
#fopt.Bounds(lB, uB, keep_feasible=False)
#fopt = optimize.minimize(Fun,p0,method='L-BFGS-B')
fopt = minimizeCompass(Fun, bounds=pBounds, x0=p0, deltatol=0.1, paired=False)
#fopt.Bounds(lB, uB, keep_feasible=False)

#printing
print("###################################################################")
print("Minimum function value      =", fopt.fun)
print("Minimum function value at x =", fopt.x)
print("Number of iterations done   =", IT)
#print(xopt)
print("###################################################################")

# In[ ]:
Exemple #12
0
def test_minimizeCompass():
    deltatol = 1e-3

    ## basic testing without stochasticity
    def quadratic(x):
        return (x**2).sum()

    res = noisyopt.minimizeCompass(quadratic,
                                   np.asarray([0.5, 1.0]),
                                   deltatol=deltatol,
                                   errorcontrol=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    # test with callback
    def callback(x):
        assert len(x) == 2

    res = noisyopt.minimizeCompass(quadratic,
                                   np.asarray([0.5, 1.0]),
                                   deltatol=deltatol,
                                   errorcontrol=False,
                                   callback=callback)

    # test with scaling
    res = noisyopt.minimizeCompass(quadratic,
                                   np.asarray([0.5, 1.0]),
                                   deltatol=deltatol,
                                   scaling=np.array([0.1, 1.0]),
                                   errorcontrol=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)

    # test with output
    res = noisyopt.minimizeCompass(quadratic,
                                   np.asarray([0.5, 1.0]),
                                   deltatol=deltatol,
                                   errorcontrol=False,
                                   disp=True)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    res = noisyopt.minimizeCompass(quadratic,
                                   np.asarray([2.5, -3.2]),
                                   deltatol=deltatol,
                                   errorcontrol=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    res = noisyopt.minimizeCompass(quadratic,
                                   np.asarray([2.5, -3.2, 0.9, 10.0, -0.3]),
                                   deltatol=deltatol,
                                   errorcontrol=False)
    npt.assert_allclose(res.x, np.zeros(5), atol=deltatol)
    npt.assert_equal(res.free, [False, False, False, False, False])

    ## test bound handling
    res = noisyopt.minimizeCompass(quadratic,
                                   np.asarray([0.5, 0.5]),
                                   bounds=np.asarray([[0, 1], [0, 1]]),
                                   deltatol=deltatol,
                                   errorcontrol=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    res = noisyopt.minimizeCompass(quadratic,
                                   np.asarray([0.8, 0.8]),
                                   bounds=np.asarray([[0.5, 1], [0.5, 1]]),
                                   deltatol=deltatol,
                                   errorcontrol=False)
    npt.assert_allclose(res.x, [0.5, 0.5], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    ## test args passing
    def quadratic_factor(x, factor):
        return factor * (x**2).sum()

    res = noisyopt.minimizeCompass(quadratic_factor,
                                   np.asarray([0.5, 1.0]),
                                   paired=False,
                                   args=(1.0, ))
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)

    ## test determination of unconstrained variables
    def quadratic_except_last(x):
        return (x[:-1]**2).sum()

    res = noisyopt.minimizeCompass(quadratic_except_last,
                                   np.asarray([0.5, 1.0]),
                                   errorcontrol=False)
    npt.assert_approx_equal(res.x[0], 0.0)
    npt.assert_equal(res.free, [False, True])

    ## test errorcontrol for stochastic function
    def stochastic_quadratic(x, seed=None):
        prng = np.random if seed is None else np.random.RandomState(seed)
        return (x**2).sum() + prng.randn(1) + 0.5 * np.random.randn(1)

    deltatol = 0.5
    # test unpaired
    res = noisyopt.minimizeCompass(stochastic_quadratic,
                                   np.array([4.55, 3.0]),
                                   deltainit=2.0,
                                   deltatol=deltatol,
                                   errorcontrol=True,
                                   paired=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])
    # test paired
    res = noisyopt.minimizeCompass(stochastic_quadratic,
                                   np.array([4.55, 3.0]),
                                   deltainit=2.0,
                                   deltatol=deltatol,
                                   errorcontrol=True,
                                   paired=True)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])
Exemple #13
0
### noisyopt start
objcount = 0


def obj(x):
    global objcount
    objcount += 1
    #if objcount%1000==0:
    #    print(objcount)
    a = x[0]
    b = x[1]
    c = x[2]
    d = x[3]
    lib.c_assignAndRun(a, b, c, d)
    return getCurEnergy()
    #return getCurMoment()


#start_time = time.time()
#print(obj([12,6]))
#print("--- %s seconds ---" % (time.time() - start_time))

lib.c_setNumConfigs(100)

res = minimizeCompass(obj, x0=snx0, deltatol=1, paired=False)
print(objcount)
print(res.success)
print(snx0)
print(res.x)
np.savetxt(resfile, np.vstack((snx0, res.x)))
Exemple #14
0
xx = np.eye(2**n_qubits)


def Los2(Theta):
    return sum(
        np.linalg.norm(func(Theta, xx[i]) - xx[i])
        for i in range(2**n_qubits - 1))


def Los3(test):
    return Los2([0, 0, test, 0, 0, 0])


res = minimizeCompass(Los3,
                      x0=[1],
                      bounds=[[-np.pi, np.pi]],
                      deltatol=0.1,
                      paired=False)

a = {
    "00": func([0, 0, 0, 0, 0, 0], [1, 0, 0, 0])[0],
    "01": func([0, 0, 0, 0, 0, 0], [0, 1, 0, 0])[1],
    "10": func([0, 0, 0, 0, 0, 0], [0, 0, 1, 0])[2],
    "11": func([0, 0, 0, 0, 0, 0], [0, 0, 0, 1])[3],
}
b = {
    "00": func([0, 0, -0.5, 0, 0, 0], [1, 0, 0, 0])[0],
    "01": func([0, 0, -0.5, 0, 0, 0], [0, 1, 0, 0])[1],
    "10": func([0, 0, -0.5, 0, 0, 0], [0, 0, 1, 0])[2],
    "11": func([0, 0, -0.5, 0, 0, 0], [0, 0, 0, 1])[3],
}
Exemple #15
0
def test_minimizeCompass():
    deltatol = 1e-3
    ## basic testing without stochasticity
    def quadratic(x):
        return (x**2).sum()

    res = noisyopt.minimizeCompass(quadratic, np.asarray([0.5, 1.0]), deltatol=deltatol,
                            errorcontrol=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    # test with callback
    def callback(x):
        assert len(x) == 2
    res = noisyopt.minimizeCompass(quadratic, np.asarray([0.5, 1.0]), deltatol=deltatol,
                            errorcontrol=False, callback=callback)

    # test with scaling
    res = noisyopt.minimizeCompass(quadratic, np.asarray([0.5, 1.0]), deltatol=deltatol,
                            scaling=np.array([0.1, 1.0]),
                            errorcontrol=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)

    # test with output
    res = noisyopt.minimizeCompass(quadratic, np.asarray([0.5, 1.0]), deltatol=deltatol,
                            errorcontrol=False, disp=True)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    res = noisyopt.minimizeCompass(quadratic, np.asarray([2.5, -3.2]), deltatol=deltatol,
                            errorcontrol=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    res = noisyopt.minimizeCompass(quadratic, np.asarray([2.5, -3.2, 0.9, 10.0, -0.3]),
                            deltatol=deltatol, errorcontrol=False)
    npt.assert_allclose(res.x, np.zeros(5), atol=deltatol)
    npt.assert_equal(res.free, [False, False, False, False, False])

    ## test bound handling
    res = noisyopt.minimizeCompass(quadratic, np.asarray([0.5, 0.5]),
                            bounds=np.asarray([[0, 1], [0, 1]]),
                            deltatol=deltatol,
                            errorcontrol=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    res = noisyopt.minimizeCompass(quadratic, np.asarray([0.8, 0.8]),
                            bounds=np.asarray([[0.5, 1], [0.5, 1]]),
                            deltatol=deltatol,
                            errorcontrol=False)
    npt.assert_allclose(res.x, [0.5, 0.5], atol=deltatol)
    npt.assert_equal(res.free, [False, False])

    ## test args passing
    def quadratic_factor(x, factor):
        return factor*(x**2).sum()

    res = noisyopt.minimizeCompass(quadratic_factor, np.asarray([0.5, 1.0]),
                            paired=False, args=(1.0,))
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)


    ## test determination of unconstrained variables
    def quadratic_except_last(x):
        return (x[:-1]**2).sum()

    res = noisyopt.minimizeCompass(quadratic_except_last, np.asarray([0.5, 1.0]),
                            errorcontrol=False)
    npt.assert_approx_equal(res.x[0], 0.0)
    npt.assert_equal(res.free, [False, True])

    ## test errorcontrol for stochastic function
    def stochastic_quadratic(x, seed=None):
        prng = np.random if seed is None else np.random.RandomState(seed)
        return (x**2).sum() + prng.randn(1) + 0.5*np.random.randn(1)

    deltatol = 0.5
    # test unpaired
    res = noisyopt.minimizeCompass(stochastic_quadratic, np.array([4.55, 3.0]),
                            deltainit=2.0, deltatol=deltatol,
                            errorcontrol=True, paired=False)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])
    # test paired
    res = noisyopt.minimizeCompass(stochastic_quadratic, np.array([4.55, 3.0]),
                            deltainit=2.0, deltatol=deltatol,
                            errorcontrol=True, paired=True)
    npt.assert_allclose(res.x, [0.0, 0.0], atol=deltatol)
    npt.assert_equal(res.free, [False, False])
Exemple #16
0
# This is a minimal usage example for the optimization routines
# see also http://noisyopt.readthedocs.io/en/latest/tutorial.html

import numpy as np
from noisyopt import minimizeCompass, minimizeSPSA

# definition of noisy function to be optimized
def obj(x):
    return (x**2).sum() + 0.1*np.random.randn()

bounds = [[-3.0, 3.0], [0.5, 5.0]]
x0 = np.array([-2.0, 2.0])
res = minimizeCompass(obj, bounds=bounds, x0=x0, deltatol=0.1, paired=False)
print(res)

res = minimizeSPSA(obj, bounds=bounds, x0=x0, niter=1000, paired=False)
print(res)