def nonLinearInterpAupr(y_score, y_true): if y_score.ndim > 1: sub_stats = pd.DataFrame(np.concatenate((y_score, y_true), axis=1), dtype='float64') else: sub_stats = pd.DataFrame(np.array([y_score, y_true]).T) results = getAUROC_PR(sub_stats) return results, y_score, y_true
def nonLinearInterpAupr(y_score, y_true): """ Given ground truth targets and predicted targets, calculates weighted non-linear interpolated AUPRC. Parameters ---------- y_true (list-like) - actual target values y_score (list-like) - predicted target values average (str, default 'micro') - one of 'micro', 'macro', 'samples', 'weighted' (see http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html) sample_weight (list-like, optional) - of shape (n_samples,) Returns ------- results (list), y_score (np.ndarray), y_true (np.ndarray) """ if y_score.ndim > 1: sub_stats = pd.DataFrame(np.concatenate((y_score, y_true), axis=1), dtype='float64') else: sub_stats = pd.DataFrame(np.array([y_score, y_true]).T) results = getAUROC_PR(sub_stats) return results, y_score, y_true