def lnL_pca_gauss(mock, ell=0, krange=None, NorS='ngc'): ''' ***TESTED*** Test that lnL_pca_gauss is consistent with chi-squared calculated directly from the mocks with the covariance matrix. ''' # Calculate the lnL_pca_gauss Pk = NG.X_pk(mock, ell=ell, krange=krange, NorS=NorS) dpk , mu_pk = NG.meansub(Pk) pca_gauss = NG.lnL_pca_gauss(dpk, Pk) # calculate chi-squared C_X = np.cov(Pk.T) chi2 = np.zeros(Pk.shape[0]) for i in range(Pk.shape[0]): chi2[i] = -0.5 * np.sum(np.dot(dpk[i,:], np.linalg.solve(C_X, dpk[i,:].T))) offset = chi2 - pca_gauss print offset fig = plt.figure() sub = fig.add_subplot(111) nbin = 32 sub.hist(pca_gauss, bins=nbin, normed=True, alpha=0.75, label='PCA Gaussian') sub.hist(chi2, bins=nbin, normed=True, alpha=0.75, label=r'$\chi^2$') sub.set_xlabel('log $\mathcal{L}$', fontsize=25) sub.set_xlim([-2.2*Pk.shape[1], 0.]) sub.legend(loc='upper left', prop={'size': 20}) f = ''.join([UT.fig_dir(), 'tests/test.lnL_pca_gauss_test.', mock, '.ell', str(ell), '.png']) fig.savefig(f, bbox_inches='tight') return None
def ica(mock, ell=0, rebin=None): ''' *** TESTED *** Test that the ICA works! ''' Pk = NG.dataX(mock, ell=ell, rebin=rebin) X, _ = NG.meansub(Pk) X_w, W = NG.whiten(X) # whitened data X_ica, W = NG.Ica(X_w) # compare covariance? C_X = np.cov(X.T) C_Xica = np.cov(X_ica.T) prettyplot() fig = plt.figure(figsize=(20, 8)) sub = fig.add_subplot(121) im = sub.imshow(np.log10(C_X), interpolation='none') sub.set_title('log(Cov.) of Data') fig.colorbar(im, ax=sub) sub = fig.add_subplot(122) im = sub.imshow(C_Xica, interpolation='none') fig.colorbar(im, ax=sub) sub.set_title('Cov. of ICA transformed Data') # save fig if rebin is None: f = ''.join([UT.fig_dir(), 'tests/test.ICAcov.', mock, '.ell', str(ell), '.png']) else: f = ''.join([UT.fig_dir(), 'tests/test.ICAcov.', mock, '.ell', str(ell), '.rebin', str(rebin), '.png']) fig.savefig(f, bbox_inches='tight') return None
def whiten(mock, ell=0, rebin=None, krange=None, method='choletsky'): ''' ***TESTED: Choletsky decomposition fails for full binned Nseries P(k) because the precision matrix estimate is not positive definite*** test the data whitening. ''' Pk = NG.dataX(mock, ell=ell, rebin=rebin, krange=krange) X, _ = NG.meansub(Pk) X_w, W = NG.whiten(X, method=method) # whitened data prettyplot() fig = plt.figure(figsize=(15,7)) sub = fig.add_subplot(121) for i in range(X.shape[1]): sub.plot(range(X_w.shape[0]), X_w[:,i]) sub.set_xlim([0, X.shape[0]]) sub.set_xlabel('$\mathtt{k}$ bins', fontsize=25) sub.set_ylim([-7., 7.]) sub.set_ylabel('$\mathtt{W^{T} (P^i_'+str(ell)+'- \overline{P_'+str(ell)+'})}$', fontsize=25) C_Xw = np.cov(X_w.T) sub = fig.add_subplot(122) im = sub.imshow(C_Xw, interpolation='none') fig.colorbar(im, ax=sub) if rebin is None: f = ''.join([UT.fig_dir(), 'tests/test.whiten.', method, '.', mock, '.ell', str(ell), '.png']) else: f = ''.join([UT.fig_dir(), 'tests/test.whiten.', method, '.', mock, '.ell', str(ell), '.rebin', str(rebin), '.png']) fig.savefig(f, bbox_inches='tight') return None
def whiten_recon(mock, ell=0, rebin=None, krange=None, method='choletsky'): ''' ***TESTED: The whitening matrices reconstruct the P(k)s*** Test whether P(k) can be reconstructed using the whitening matrix ''' Pk, k = NG.dataX(mock, ell=ell, rebin=rebin, krange=krange, k_arr=True) X, mu_X = NG.meansub(Pk) X_w, W = NG.whiten(X, method=method) # whitened data prettyplot() fig = plt.figure(figsize=(15,7)) sub = fig.add_subplot(121) for i in range(X.shape[0]): sub.plot(k, Pk[i,:]) if krange is None: sub.set_xlim([1e-3, 0.5]) else: sub.set_xlim(krange) sub.set_xscale('log') sub.set_xlabel('$\mathtt{k}$', fontsize=25) sub.set_yscale('log') sub.set_ylim([2e3, 2.5e5]) np.random.seed(7) sub = fig.add_subplot(122) for i in range(X.shape[0]): X_noise = np.random.normal(size=X_w.shape[1]) X_rec = np.linalg.solve(W.T, X_noise.T) sub.plot(k, X_rec.T + mu_X) if krange is None: sub.set_xlim([1e-3, 0.5]) else: sub.set_xlim(krange) sub.set_xscale('log') sub.set_xlabel('$\mathtt{k}$', fontsize=25) sub.set_yscale('log') sub.set_ylim([2e3, 2.5e5]) if rebin is None: f = ''.join([UT.fig_dir(), 'tests/test.whiten_recon.', method, '.', mock, '.ell', str(ell), '.png']) else: f = ''.join([UT.fig_dir(), 'tests/test.whiten_recon.', method, '.', mock, '.ell', str(ell), '.rebin', str(rebin), '.png']) fig.savefig(f, bbox_inches='tight') return None
def p_Xw_i_MISE(mock, ell=0, rebin=None, krange=None, method='choletsky', b=0.1): ''' Examine the pdf of X_w^i components that deviate significantly from N(0,1) based on MISE ''' Pk = NG.dataX(mock, ell=ell, rebin=rebin, krange=krange) X, _ = NG.meansub(Pk) X_w, W = NG.whiten(X, method=method) # whitened data # calculate the chi-squared values of each p(X_w^i) x = np.arange(-5., 5.1, 0.1) mise = np.zeros(X_w.shape[1]) for i_bin in range(X_w.shape[1]): mise[i_bin] = NG.MISE(X_w[:,i_bin], b=b) # plot the most discrepant components. prettyplot() fig = plt.figure() sub = fig.add_subplot(111) i_sort = np.argsort(mise) print 'outlier bins = ', i_sort[-5:] print 'mise = ', mise[i_sort[-5:]] nbin = int(10./b) for i_bin in i_sort[-10:]: hb_Xi, Xi_edges = np.histogram(X_w[:,i_bin], bins=nbin, range=[-5., 5.], normed=True) p_X_w_arr = UT.bar_plot(Xi_edges, hb_Xi) sub.plot(p_X_w_arr[0], p_X_w_arr[1]) sub.plot(x, UT.gauss(x, 1., 0.), c='k', lw=3, label='$\mathcal{N}(0,1)$') sub.set_xlim([-2.5, 2.5]) sub.set_xlabel('$\mathtt{X^{i}_{W}}$', fontsize=25) sub.set_ylim([0., 0.6]) sub.set_ylabel('$\mathtt{P(X^{i}_{W})}$', fontsize=25) sub.legend(loc='upper right') str_rebin = '' if rebin is not None: str_rebin = '.rebin'+str(rebin) f = ''.join([UT.fig_dir(), 'tests/test.p_Xw_i_outlier.', method, '.', mock, '.ell', str(ell), str_rebin, '.b', str(b), '.png']) fig.savefig(f, bbox_inches='tight') return None
def p_Xw_i_outlier(mock, ell=0, rebin=None, krange=None, method='choletsky'): ''' Examine the pdf of X_w^i components that deviate significantly from N(0,1) ''' Pk = NG.dataX(mock, ell=ell, rebin=rebin, krange=krange) X, _ = NG.meansub(Pk) X_w, W = NG.whiten(X, method=method) # whitened data # calculate the chi-squared values of each p(X_w^i) x = np.arange(-5., 5.1, 0.1) chi2 = np.zeros(X_w.shape[1]) for i_bin in range(X_w.shape[1]): kern = gkde(X_w[:,i_bin]) # gaussian KDE kernel using "rule of thumb" scott's rule. chi2[i_bin] = np.sum((UT.gauss(x, 1., 0.) - kern.evaluate(x))**2)/np.float(len(x)) # plot the most discrepant components. prettyplot() fig = plt.figure() sub = fig.add_subplot(111) i_sort = np.argsort(chi2) print 'outlier bins = ', i_sort[-5:] for i_bin in i_sort[-10:]: kern = gkde(X_w[:,i_bin]) # gaussian KDE kernel using "rule of thumb" scott's rule. sub.plot(x, kern.evaluate(x)) sub.plot(x, UT.gauss(x, 1., 0.), c='k', lw=3, label='$\mathcal{N}(0,1)$') sub.set_xlim([-2.5, 2.5]) sub.set_xlabel('$\mathtt{X^{i}_{W}}$', fontsize=25) sub.set_ylim([0., 0.6]) sub.set_ylabel('$\mathtt{P(X^{i}_{W})}$', fontsize=25) sub.legend(loc='upper right') if rebin is None: f = ''.join([UT.fig_dir(), 'tests/test.p_Xw_i_outlier.', method, '.', mock, '.ell', str(ell), '.png']) else: f = ''.join([UT.fig_dir(), 'tests/test.p_Xw_i_outlier.', method, '.', mock, '.ell', str(ell), '.rebin', str(rebin), '.png']) fig.savefig(f, bbox_inches='tight') return None
def dataX(mock, ell=0, rebin=None, krange=None): ''' ***TESTED*** Test the data X calculation ''' Pk = NG.dataX(mock, ell=ell, rebin=rebin, krange=krange) X, _ = NG.meansub(Pk) prettyplot() fig = plt.figure() sub = fig.add_subplot(111) for i in range(X.shape[0]): sub.plot(range(X.shape[1]), X[i,:]) sub.set_xlim([0, X.shape[1]]) sub.set_xlabel('$\mathtt{k}$ bins', fontsize=25) sub.set_ylim([-1e5, 1e5]) sub.set_ylabel('$\mathtt{P^i_'+str(ell)+'(k) - \overline{P_'+str(ell)+'(k)}}$', fontsize=25) if rebin is not None: f = ''.join([UT.fig_dir(), 'tests/test.dataX.', mock, '.ell', str(ell), '.rebin', str(rebin), '.png']) else: f = ''.join([UT.fig_dir(), 'tests/test.dataX.', mock, '.ell', str(ell), '.png']) fig.savefig(f, bbox_inches='tight') return None
def p_Xw_i(mock, ell=0, rebin=None, krange=None, ica=False, pca=False): ''' Test the probability distribution function of each X_w^i component -- p(X_w^i). First compare the histograms of p(X_w^i) with N(0,1). Then compare the gaussian KDE of p(X_w^i). ''' Pk = NG.dataX(mock, ell=ell, rebin=rebin, krange=krange) X, _ = NG.meansub(Pk) str_w = 'W' if ica and pca: raise ValueError if ica: # ICA components # ICA components do not need to be Gaussian. # in fact the whole point of the ICA transform # is to capture the non-Gaussianity... X_white, _ = NG.whiten(X) # whitened data X_w, _ = NG.Ica(X_white) str_w = 'ICA' if pca: # PCA components X_w, _ = NG.whiten(X, method='pca') # whitened data str_w = 'PCA' if not ica and not pca: # just whitened X_w, W = NG.whiten(X) # whitened data # p(X_w^i) histograms fig = plt.figure(figsize=(15,7)) sub = fig.add_subplot(121) for i_bin in range(X_w.shape[1]): p_X_w, edges = np.histogram(X_w[:,i_bin], normed=True) p_X_w_arr = UT.bar_plot(edges, p_X_w) sub.plot(p_X_w_arr[0], p_X_w_arr[1]) x = np.arange(-5., 5.1, 0.1) sub.plot(x, UT.gauss(x, 1., 0.), c='k', lw=3, label='$\mathcal{N}(0,1)$') sub.set_xlim([-2.5, 2.5]) sub.set_xlabel('$\mathtt{X_{'+str_w+'}}$', fontsize=25) sub.set_ylim([0., 0.6]) sub.set_ylabel('$\mathtt{P(X_{'+str_w+'})}$', fontsize=25) sub.legend(loc='upper right') # p(X_w^i) gaussian KDE fits pdfs = NG.p_Xw_i(X_w, range(X_w.shape[1]), x=x) sub = fig.add_subplot(122) for i_bin in range(X_w.shape[1]): sub.plot(x, pdfs[i_bin]) sub.plot(x, UT.gauss(x, 1., 0.), c='k', lw=3, label='$\mathcal{N}(0,1)$') sub.set_xlim([-2.5, 2.5]) sub.set_xlabel('$\mathtt{X_{W}}$', fontsize=25) sub.set_ylim([0., 0.6]) sub.set_ylabel('$\mathtt{P(X_{W})}$', fontsize=25) sub.legend(loc='upper right') str_ica, str_pca = '', '' if ica: str_ica = '.ICA' if pca: str_pca = '.PCA' if rebin is None: f = ''.join([UT.fig_dir(), 'tests/test.p_Xw_i', str_pca, str_ica, '.', mock, '.ell', str(ell), '.png']) else: f = ''.join([UT.fig_dir(), 'tests/test.p_Xw_i', str_pca, str_ica, '.', mock, '.ell', str(ell), '.rebin', str(rebin), '.png']) fig.savefig(f, bbox_inches='tight') return None
def p_Xwi_Xwj_outlier(mock, ell=0, rebin=None, krange=None, ica=False, pca=False): ''' Compare the joint pdfs of whitened X components (i.e. X_w^i, X_w^j) p(X_w^i, X_w^j) to p(X_w^i) p(X_w^j) in order to test the independence argument. ''' Pk = NG.dataX(mock, ell=ell, rebin=rebin, krange=krange) X, _ = NG.meansub(Pk) if ica and pca: raise ValueError if ica: # ICA components X_white, _ = NG.whiten(X) # whitened data X_w, _ = NG.Ica(X_white) if pca: # PCA components X_w, _ = NG.whiten(X, method='pca') # whitened data if not ica and not pca: # just whitened X_w, _ = NG.whiten(X, method='choletsky') # whitened data x, y = np.linspace(-5., 5., 50), np.linspace(-5., 5., 50) xx, yy = np.meshgrid(x,y) pos = np.vstack([xx.ravel(), yy.ravel()]) ij_i, ij_j = np.meshgrid(range(X_w.shape[1]), range(X_w.shape[1])) ij = np.vstack([ij_i.ravel(), ij_j.ravel()]) # joint pdfs of X_w^i and X_w^j estimated from mocks # i.e. p(X_w^i, X_w^j) pdfs_2d = NG.p_Xwi_Xwj(X_w, ij, x=x, y=y) # p(X_w^i) * p(X_w^j) estimated from mocks pXwi = NG.p_Xw_i(X_w, range(X_w.shape[1]), x=x) pXwj = pXwi # calculate L2 norm difference betwen joint pdf and 2d gaussian chi2 = np.zeros(len(pdfs_2d)) for i in range(len(pdfs_2d)): if not isinstance(pdfs_2d[i], float): pXwipXwj = np.dot(pXwi[ij[0,i]][:,None], pXwj[ij[1,i]][None,:]).T.flatten() chi2[i] = np.sum((pXwipXwj - pdfs_2d[i])**2) # ij values with the highest chi-squared ii_out = np.argsort(chi2)[-10:] inc = np.where(ij[0,ii_out] > ij[1,ii_out]) prettyplot() fig = plt.figure(figsize=(len(inc[0])*10, 8)) for ii, i_sort_i in enumerate(ii_out[inc]): sub = fig.add_subplot(1, len(inc[0]), ii+1) # plot p(X_w^i) * p(X_w^j) pXwipXwj = np.dot(pXwi[ij[0,i_sort_i]][:,None], pXwj[ij[1,i_sort_i]][None,:]).T sub.contourf(xx, yy, pXwipXwj, cmap='gray_r', levels=[0.05, 0.1, 0.15, 0.2]) # p(X_w^i, X_w^j) Z = np.reshape(pdfs_2d[i_sort_i], xx.shape) cs = sub.contour(xx, yy, Z, colors='k', linestyles='dashed', levels=[0.05, 0.1, 0.15, 0.2]) cs.collections[0].set_label('$\mathtt{p(X_w^i, X_w^j)}$') sub.set_xlim([-3., 3.]) sub.set_xlabel('$\mathtt{X_w^{i='+str(ij[0,i_sort_i])+'}}$', fontsize=25) sub.set_ylim([-3., 3.]) sub.set_ylabel('$\mathtt{X_w^{j='+str(ij[1,i_sort_i])+'}}$', fontsize=25) if ii == 0: sub.legend(loc='upper right', prop={'size':25}) else: sub.set_yticklabels([]) str_ica, str_pca = '', '' if ica: str_ica = '.ICA' if pca: str_pca = '.PCA' if rebin is None: f = ''.join([UT.fig_dir(), 'tests/test.p_Xwi_Xwj_outlier', str_ica, str_pca, '.', mock, '.ell', str(ell), '.png']) else: f = ''.join([UT.fig_dir(), 'tests/test.p_Xwi_Xwj_outlier', str_ica, str_pca, '.', mock, '.ell', str(ell), '.rebin', str(rebin), '.png']) fig.savefig(f, bbox_inches='tight') return None
def GMF_p_Xw_i(ica=False, pca=False): ''' Test the probability distribution function of each transformed X component -- p(X^i). First compare the histograms of p(X_w^i) with N(0,1). Then compare the gaussian KDE of p(X_w^i). ''' gmf = NG.X_gmf_all() # import all the GMF mocks X, _ = NG.meansub(gmf) str_w = 'W' if ica and pca: raise ValueError if ica: # ICA components # ICA components do not need to be Gaussian. # in fact the whole point of the ICA transform # is to capture the non-Gaussianity... X_white, _ = NG.whiten(X) # whitened data X_w, _ = NG.Ica(X_white) str_w = 'ICA' if pca: # PCA components X_w, _ = NG.whiten(X, method='pca') # whitened data str_w = 'PCA' if not ica and not pca: # just whitened X_w, W = NG.whiten(X) # whitened data # p(X_w^i) histograms fig = plt.figure(figsize=(5*gmf.shape[1],4)) for icomp in range(gmf.shape[1]): sub = fig.add_subplot(1, gmf.shape[1], icomp+1) # histogram of X_w^i s hh = np.histogram(X_w[:,icomp], normed=True, bins=50, range=[-5., 5.]) p_X_w_arr = UT.bar_plot(*hh) sub.fill_between(p_X_w_arr[0], np.zeros(len(p_X_w_arr[1])), p_X_w_arr[1], color='k', alpha=0.25) x = np.linspace(-5., 5., 100) sub.plot(x, UT.gauss(x, 1., 0.), c='k', lw=2, ls=':', label='$\mathcal{N}(0,1)$') # p(X_w^i) gaussian KDE fits t_start = time.time() pdf = NG.p_Xw_i(X_w, icomp, x=x, method='gkde') sub.plot(x, pdf, lw=2.5, label='Gaussian KDE') print 'scipy Gaussian KDE ', time.time()-t_start # p(X_w^i) SKlearn KDE fits t_start = time.time() pdf = NG.p_Xw_i(X_w, icomp, x=x, method='sk_kde') sub.plot(x, pdf, lw=2.5, label='SKlearn KDE') print 'SKlearn CV best-fit KDE ', time.time()-t_start # p(X_w^i) statsmodels KDE fits t_start = time.time() pdf = NG.p_Xw_i(X_w, icomp, x=x, method='sm_kde') sub.plot(x, pdf, lw=2.5, label='StatsModels KDE') print 'Stats Models KDE ', time.time()-t_start # p(X_w^i) GMM fits pdf = NG.p_Xw_i(X_w, icomp, x=x, method='gmm', n_comp_max=20) sub.plot(x, pdf, lw=2.5, ls='--', label='GMM') sub.set_xlim([-3., 3.]) sub.set_xlabel('$X_{'+str_w+'}^{('+str(icomp)+')}$', fontsize=25) sub.set_ylim([0., 0.6]) if icomp == 0: sub.set_ylabel('$P(X_{'+str_w+'})$', fontsize=25) sub.legend(loc='upper left', prop={'size': 15}) str_ica, str_pca = '', '' if ica: str_ica = '.ICA' if pca: str_pca = '.PCA' f = ''.join([UT.fig_dir(), 'tests/test.GMF_p_Xw_i', str_pca, str_ica, '.png']) fig.savefig(f, bbox_inches='tight') return None
def divGMF(div_func='kl', Nref=1000, K=5, n_mc=10, n_comp_max=10, n_mocks=2000): ''' compare the divergence estimates between D( gauss(C_gmf) || gauss(C_gmf) ), D( gmfs || gauss(C_gmf) ), D( gmfs || p(gmfs) KDE), D( gmfs || p(gmfs) GMM), D( gmfs || PI p(gmfs^i_ICA) KDE), and D( gmfs || PI p(gmfs^i_ICA) GMM) ''' if isinstance(Nref, float): Nref = int(Nref) # read in mock GMFs from all HOD realizations (20,000 mocks) gmfs_mock = NG.X_gmf_all()[:n_mocks] n_mock = gmfs_mock.shape[0] # number of mocks print("%i mocks" % n_mock) gmfs_mock_meansub, _ = NG.meansub(gmfs_mock) # mean subtract X_w, W = NG.whiten(gmfs_mock_meansub) X_ica, _ = NG.Ica(X_w) # ICA transformation C_gmf = np.cov(X_w.T) # covariance matrix # p(gmfs) GMM gmms, bics = [], [] for i_comp in range(1,n_comp_max+1): gmm = GMix(n_components=i_comp) gmm.fit(X_w) gmms.append(gmm) bics.append(gmm.bic(X_w)) ibest = np.array(bics).argmin() kern_gmm = gmms[ibest] # p(gmfs) KDE t0 = time.time() grid = GridSearchCV(skKDE(), {'bandwidth': np.linspace(0.1, 1.0, 30)}, cv=10) # 10-fold cross-validation grid.fit(X_w) kern_kde = grid.best_estimator_ dt = time.time() - t0 print('%f sec' % dt) # PI p(gmfs^i_ICA) GMM kern_gmm_ica = [] for ibin in range(X_ica.shape[1]): gmms, bics = [], [] for i_comp in range(1,n_comp_max+1): gmm = GMix(n_components=i_comp) gmm.fit(X_ica[:,ibin][:,None]) gmms.append(gmm) bics.append(gmm.bic(X_ica[:,ibin][:,None])) ibest = np.array(bics).argmin() kern_gmm_ica.append(gmms[ibest]) # PI p(gmfs^i_ICA) KDE kern_kde_ica = [] for ibin in range(X_ica.shape[1]): t0 = time.time() grid = GridSearchCV(skKDE(), {'bandwidth': np.linspace(0.1, 1.0, 30)}, cv=10) # 10-fold cross-validation grid.fit(X_ica[:,ibin][:,None]) kern_kde_ica.append(grid.best_estimator_) dt = time.time() - t0 print('%f sec' % dt) # caluclate the divergences now div_gauss_ref, div_gauss = [], [] div_gmm, div_gmm_ica = [], [] div_kde, div_kde_ica = [], [] for i in range(n_mc): print('%i montecarlo' % i) t_start = time.time() # reference divergence in order to showcase the estimator's scatter # Gaussian distribution described by C_gmf with same n_mock mocks gauss = mvn(np.zeros(gmfs_mock.shape[1]), C_gmf, size=n_mock) div_gauss_ref_i = NG.kNNdiv_gauss(gauss, C_gmf, Knn=K, div_func=div_func, Nref=Nref) div_gauss_ref.append(div_gauss_ref_i) # estimate divergence between gmfs_white and a # Gaussian distribution described by C_gmf div_gauss_i = NG.kNNdiv_gauss(X_w, C_gmf, Knn=K, div_func=div_func, Nref=Nref) div_gauss.append(div_gauss_i) # D( gmfs || p(gmfs) GMM) div_gmm_i = NG.kNNdiv_Kernel(X_w, kern_gmm, Knn=K, div_func=div_func, Nref=Nref, compwise=False) div_gmm.append(div_gmm_i) # D( gmfs || p(gmfs) KDE) div_kde_i = NG.kNNdiv_Kernel(X_w, kern_kde, Knn=K, div_func=div_func, Nref=Nref, compwise=False) div_kde.append(div_kde_i) # D( gmfs || PI p(gmfs^i_ICA) GMM), div_gmm_ica_i = NG.kNNdiv_Kernel(X_ica, kern_gmm_ica, Knn=K, div_func=div_func, Nref=Nref, compwise=True) div_gmm_ica.append(div_gmm_ica_i) # D( gmfs || PI p(gmfs^i_ICA) KDE), div_kde_ica_i = NG.kNNdiv_Kernel(X_ica, kern_kde_ica, Knn=K, div_func=div_func, Nref=Nref, compwise=True) div_kde_ica.append(div_kde_ica_i) print('t= %f sec' % round(time.time()-t_start,2)) fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) hrange = [-0.15, 0.6] nbins = 50 divs = [div_gauss_ref, div_gauss, div_gmm, div_kde, div_gmm_ica, div_kde_ica] labels = ['Ref.', r'$D(\{\zeta_i^{(m)}\}\parallel \mathcal{N}({\bf C}^{(m)}))$', r'$D(\{\zeta^{(m)}\}\parallel p_\mathrm{GMM}(\{\zeta^{m}\}))$', r'$D(\{\zeta^{(m)}\}\parallel p_\mathrm{KDE}(\{\zeta^{m}\}))$', r'$D(\{\zeta_\mathrm{ICA}^{(m)}\}\parallel \prod_{i} p^\mathrm{GMM}(\{\zeta_{i, \mathrm{ICA}}^{m}\}))$', r'$D(\{\zeta_\mathrm{ICA}^{(m)}\}\parallel \prod_{i} p^\mathrm{KDE}(\{\zeta_{i, \mathrm{ICA}}^{m}\}))$'] y_max = 0. for div, lbl in zip(divs, labels): hh = np.histogram(np.array(div), normed=True, range=hrange, bins=nbins) bp = UT.bar_plot(*hh) sub.fill_between(bp[0], np.zeros(len(bp[0])), bp[1], edgecolor='none', alpha=0.5, label=lbl) y_max = max(y_max, bp[1].max()) if (np.average(div) < hrange[0]) or (np.average(div) > hrange[1]): print('divergence of %s (%f) is outside range' % (lbl, np.average(div))) sub.set_xlim(hrange) sub.set_ylim([0., y_max*1.2]) sub.legend(loc='upper left', prop={'size': 15}) # xlabels if 'renyi' in div_func: alpha = float(div_func.split(':')[-1]) sub.set_xlabel(r'Renyi-$\alpha='+str(alpha)+'$ divergence', fontsize=20) elif 'kl' in div_func: sub.set_xlabel(r'KL divergence', fontsize=20) if 'renyi' in div_func: str_div = 'renyi'+str(alpha) elif div_func == 'kl': str_div = 'kl' f_fig = ''.join([UT.fig_dir(), 'tests/kNN_divergence.gmf.K', str(K), '.', str(n_mocks), '.', str_div, '.png']) fig.savefig(f_fig, bbox_inches='tight') return None
def diverge(obvs, diver, div_func='kl', Nref=1000, K=5, n_mc=10, n_comp_max=10, n_mocks=20000, pk_mock='patchy.z1', NorS='ngc', njobs=1): ''' calculate the divergences: - D( gauss(C_X) || gauss(C_X) ) - D( mock X || gauss(C_X)) - D( mock X || p(X) KDE) - D( mock X || p(X) GMM) - D( mock X || PI p(X^i_ICA) KDE) - D( mock X || PI p(X^i_ICA) GMM) ''' if isinstance(Nref, float): Nref = int(Nref) if diver not in [ 'ref', 'pX_gauss', 'pX_gauss_hartlap', 'pX_GMM', 'pX_GMM_ref', 'pX_KDE', 'pX_KDE_ref', 'pX_scottKDE', 'pX_scottKDE_ref', 'pXi_ICA_GMM', 'pXi_ICA_GMM_ref', 'pXi_parICA_GMM', 'pXi_parICA_GMM_ref', 'pXi_ICA_KDE', 'pXi_ICA_KDE_ref', 'pXi_parICA_KDE', 'pXi_parICA_KDE_ref', 'pXi_ICA_scottKDE', 'pXi_ICA_scottKDE_ref', 'pXi_parICA_scottKDE', 'pXi_parICA_scottKDE_ref' ]: raise ValueError str_obvs = '' if obvs == 'pk': str_obvs = '.' + NorS if 'renyi' in div_func: alpha = float(div_func.split(':')[-1]) str_div = 'renyi' + str(alpha) elif div_func == 'kl': str_div = 'kl' str_comp = '' if 'GMM' in diver: str_comp = '.ncomp' + str(n_comp_max) f_dat = ''.join([ UT.dat_dir(), 'diverg/', 'diverg.', obvs, str_obvs, '.', diver, '.K', str(K), str_comp, '.Nref', str(Nref), '.', str_div, '.dat' ]) if not os.path.isfile(f_dat): print('-- writing to -- \n %s' % f_dat) f_out = open(f_dat, 'w') else: print('-- appending to -- \n %s' % f_dat) # read in mock data X if obvs == 'pk': X_mock = NG.X_pk_all(pk_mock, NorS=NorS, sys='fc') elif obvs == 'gmf': if n_mocks is not None: X_mock = NG.X_gmf_all()[:n_mocks] else: X_mock = NG.X_gmf_all() else: raise ValueError("obvs = 'pk' or 'gmf'") n_mock = X_mock.shape[0] # number of mocks print("%i mocks" % n_mock) X_mock_meansub, _ = NG.meansub(X_mock) # mean subtract X_w, W = NG.whiten(X_mock_meansub) if '_ICA' in diver: X_ica, W_ica = NG.Ica(X_w) # ICA transformation W_ica_inv = sp.linalg.pinv(W_ica.T) elif '_parICA' in diver: # FastICA transformation using parallel algorithm X_ica, W_ica = NG.Ica(X_w, algorithm='parallel') W_ica_inv = sp.linalg.pinv(W_ica.T) if diver in ['pX_gauss', 'ref']: C_X = np.cov(X_w.T) # covariance matrix elif diver in ['pX_gauss_hartlap']: C_X = np.cov(X_w.T) # covariance matrix f_hartlap = (n_mock - float(X_mock.shape[1]) - 2.) / (n_mock - 1.) print("hartlap factor = %f" % f_hartlap) C_X = C_X / f_hartlap # scale covariance matrix by hartlap factor elif diver in ['pX_GMM', 'pX_GMM_ref']: # p(mock X) GMM gmms, bics = [], [] for i_comp in range(1, n_comp_max + 1): gmm = GMix(n_components=i_comp) gmm.fit(X_w) gmms.append(gmm) bics.append(gmm.bic(X_w)) ibest = np.array(bics).argmin() kern_gmm = gmms[ibest] elif diver in ['pX_KDE', 'pX_KDE_ref']: # p(mock X) KDE t0 = time.time() grid = GridSearchCV(skKDE(), {'bandwidth': np.linspace(0.1, 1.0, 30)}, cv=10, n_jobs=njobs) # 10-fold cross-validation grid.fit(X_w) kern_kde = grid.best_estimator_ dt = time.time() - t0 print('%f sec' % dt) elif diver in ['pX_scottKDE', 'pX_scottKDE_ref']: # p(mock X) KDE # calculate Scott's Rule KDE t0 = time.time() kern_kde = UT.KayDE(X_w) dt = time.time() - t0 print('%f sec' % dt) elif diver in [ 'pXi_ICA_GMM', 'pXi_ICA_GMM_ref', 'pXi_parICA_GMM', 'pXi_parICA_GMM_ref' ]: # PI p(X^i_ICA) GMM kern_gmm_ica = [] for ibin in range(X_ica.shape[1]): gmms, bics = [], [] for i_comp in range(1, n_comp_max + 1): gmm = GMix(n_components=i_comp) gmm.fit(X_ica[:, ibin][:, None]) gmms.append(gmm) bics.append(gmm.bic(X_ica[:, ibin][:, None])) ibest = np.array(bics).argmin() kern_gmm_ica.append(gmms[ibest]) elif diver in [ 'pXi_ICA_KDE', 'pXi_ICA_KDE_ref', 'pXi_parICA_KDE', 'pXi_parICA_KDE_ref' ]: # PI p(X^i_ICA) KDE kern_kde_ica = [] for ibin in range(X_ica.shape[1]): t0 = time.time() grid = GridSearchCV(skKDE(), {'bandwidth': np.linspace(0.1, 1.0, 30)}, cv=10, n_jobs=njobs) # 10-fold cross-validation grid.fit(X_ica[:, ibin][:, None]) kern_kde_ica.append(grid.best_estimator_) dt = time.time() - t0 print('%f sec' % dt) elif diver in [ 'pXi_ICA_scottKDE', 'pXi_ICA_scottKDE_ref', 'pXi_parICA_scottKDE', 'pXi_parICA_scottKDE_ref' ]: # PI p(X^i_ICA) KDE kern_kde_ica = [] for ibin in range(X_ica.shape[1]): kern_kde_i = UT.KayDE(X_ica[:, ibin]) kern_kde_ica.append(kern_kde_i) # caluclate the divergences now divs = [] for i in range(n_mc): print('%i montecarlo' % i) t0 = time.time() if diver in ['pX_gauss', 'pX_gauss_hartlap']: # estimate divergence between gmfs_white and a # Gaussian distribution described by C_gmf div_i = NG.kNNdiv_gauss(X_w, C_X, Knn=K, div_func=div_func, Nref=Nref, njobs=njobs) elif diver == 'ref': # reference divergence in order to showcase the estimator's scatter # Gaussian distribution described by C_gmf with same n_mock mocks gauss = mvn(np.zeros(X_mock.shape[1]), C_X, size=n_mock) div_i = NG.kNNdiv_gauss(gauss, C_X, Knn=K, div_func=div_func, Nref=Nref, njobs=njobs) elif diver == 'pX_GMM': # D( mock X || p(X) GMM) div_i = NG.kNNdiv_Kernel(X_w, kern_gmm, Knn=K, div_func=div_func, Nref=Nref, compwise=False, njobs=njobs) elif diver == 'pX_GMM_ref': # D( sample from p(X) GMM || p(X) GMM) samp = kern_gmm.sample(n_mock) div_i = NG.kNNdiv_Kernel(samp[0], kern_gmm, Knn=K, div_func=div_func, Nref=Nref, compwise=False, njobs=njobs) elif diver in ['pX_KDE', 'pX_scottKDE']: # D( mock X || p(X) KDE) div_i = NG.kNNdiv_Kernel(X_w, kern_kde, Knn=K, div_func=div_func, Nref=Nref, compwise=False, njobs=njobs) divs.append(div_i) elif diver in ['pX_KDE_ref', 'pX_scottKDE_ref' ]: # D( sample from p(X) KDE || p(X) KDE) samp = kern_kde.sample(n_mock) div_i = NG.kNNdiv_Kernel(samp, kern_kde, Knn=K, div_func=div_func, Nref=Nref, compwise=False, njobs=njobs) divs.append(div_i) elif diver in ['pXi_ICA_GMM', 'pXi_parICA_GMM']: # D( mock X || PI p(X^i_ICA) GMM), div_i = NG.kNNdiv_Kernel(X_w, kern_gmm_ica, Knn=K, div_func=div_func, Nref=Nref, compwise=True, njobs=njobs, W_ica_inv=W_ica_inv) elif diver in ['pXi_ICA_GMM_ref', 'pXi_parICA_GMM_ref']: # D( ref. sample || PI p(X^i_ICA) GMM), samp = np.zeros((n_mock, X_ica.shape[1])) for icomp in range(X_ica.shape[1]): samp_i = kern_gmm_ica[icomp].sample(n_mock) samp[:, icomp] = samp_i[0].flatten() samp = np.dot(samp, W_ica_inv.T) div_i = NG.kNNdiv_Kernel(samp, kern_gmm_ica, Knn=K, div_func=div_func, Nref=Nref, compwise=True, njobs=njobs, W_ica_inv=W_ica_inv) elif diver in [ 'pXi_ICA_KDE', 'pXi_ICA_scottKDE', 'pXi_parICA_KDE', 'pXi_parICA_scottKDE' ]: # D( mock X || PI p(X^i_ICA) KDE), div_i = NG.kNNdiv_Kernel(X_w, kern_kde_ica, Knn=K, div_func=div_func, Nref=Nref, compwise=True, njobs=njobs, W_ica_inv=W_ica_inv) elif diver in [ 'pXi_ICA_KDE_ref', 'pXi_ICA_scottKDE_ref', 'pXi_parICA_KDE_ref', 'pXi_parICA_scottKDE_ref' ]: # D( ref sample || PI p(X^i_ICA) KDE), samp = np.zeros((n_mock, X_ica.shape[1])) for icomp in range(X_ica.shape[1]): samp_i = kern_kde_ica[icomp].sample(n_mock) samp[:, icomp] = samp_i.flatten() samp = np.dot(samp, W_ica_inv.T) div_i = NG.kNNdiv_Kernel(samp, kern_kde_ica, Knn=K, div_func=div_func, Nref=Nref, compwise=True, njobs=njobs, W_ica_inv=W_ica_inv) print(div_i) f_out = open(f_dat, 'a') f_out.write('%f \n' % div_i) f_out.close() return None