Exemple #1
0
durationH    = endtime - starttime
oldstarttime = starttime
oldendtime   = endtime
Xspacing     = 2.44140625E-4
pathtoinput  = "/home/spxha/"
strainH      = TimeSeries.read(pathtoinput+'S6framesH1.lcf',channel='H1:LDAS-STRAIN', start=starttime, end=endtime)
strainL      = TimeSeries.read(pathtoinput+'S6framesL1.lcf',channel='L1:LDAS-STRAIN', start=starttime, end=endtime)
num_points   = int(durationH/Xspacing)
h0_min       = 0.0000001
h0_vals_num  = 30
#----------------------------
# Applying a bandpass filter
#----------------------------
coefsL  = get_filter_coefs('L1')
coefsH  = get_filter_coefs('H1')
strainL = filter_data(strainL,coefsL)
strainH = filter_data(strainH,coefsH)
timeH   = np.arange(starttime, endtime, Xspacing)
timeL   = timeH
detMap  = {'H1': lal.LALDetectorIndexLHODIFF, 'L1':
lal.LALDetectorIndexLLODIFF}
detH1  = lal.CachedDetectors[detMap['H1']]
detL1  = lal.CachedDetectors[detMap['L1']]
tgps   = lal.LIGOTimeGPS(starttime, 0)

#---------- Get right ascension and declination of source in radians ----------#
numseg30 = int((endtime-starttime)/30.)
seg30    = starttime + 30*np.linspace(1,numseg30,numseg30) # 30 second update rate
tdelay   = [[0] for _ in range(numseg30)]
for i in range(numseg30-1):
	for j in range(int(len(timeL)*Xspacing)):
def validity_test(starttime, endtime, h0_max=0.001):
	#------- Packages ---------#
	print 'Importing packages'
	import numpy as np
	import astropy, gwpy, h5py, lal, sys, os
	from astropy.coordinates import get_sun
	import astropy.time as Time
	from scipy.signal import butter, filtfilt
	from gwpy.timeseries import TimeSeries
	from antres import antenna_response as ant_res
	from scipy.misc import logsumexp
	from notchfilt import get_filter_coefs, filter_data
	from optparse import OptionParser

	#-------- Importing, filtering and timeshifting data ----------#
	print 'Reading data'
	durationH = endtime - starttime 	# same for durationL, but not used anyway
	oldstarttime = starttime  			# for use later
	oldendtime = endtime 				# for use later
	Xspacing = 2.44140625E-4
	gpsTime = np.linspace(starttime,endtime,int(1/Xspacing))
	pathtoinput = "/home/spxha/"
	strainH = TimeSeries.read(pathtoinput+'S6framesH1.lcf',channel='H1:LDAS-STRAIN', start=starttime, end=endtime)
	strainL = TimeSeries.read(pathtoinput+'S6framesL1.lcf',channel='L1:LDAS-STRAIN', start=starttime, end=endtime)
	num_points = int(durationH/Xspacing)
	h0_min=0.00005
	h0_vals_num=30

	# Adding in a fake signal
	# frequency in the middle of the range we're interested in 125 Hz
	omega = 250.0*np.pi
	amplitude = 0.5e-24 # (hopefully) middle of h0 values
	# the signal to introduce is of the form amplitude*np.sin(omega*t)
	# first get timeL and timeH in synch with the sun's position

	print 'Getting the detectors in sync'
	timeH = np.arange(starttime, endtime, Xspacing)
	timeL = timeH
	detMap = {'H1': lal.LALDetectorIndexLHODIFF, 'L1':
	lal.LALDetectorIndexLLODIFF}
	detH1 = lal.CachedDetectors[detMap['H1']]
	detL1 = lal.CachedDetectors[detMap['L1']]
	tgps = lal.LIGOTimeGPS(starttime, 0)

	#---------- Get right ascension and declination of source in radians ----------#
	numseg30 = int((endtime-starttime)/30.)
	seg30 = starttime + 30*np.linspace(1,numseg30,numseg30) # 30 second update rate
	tdelay = [[0] for _ in range(numseg30)]
	tdelay   = [[0] for _ in range(numseg30)]
	for i in range(numseg30-1):
			for j in range(int(len(timeL)*Xspacing)):
					if ((timeL[j/Xspacing]>seg30[i])&(timeL[j/Xspacing]<seg30[i+1])):
							coordstime=seg30[i]
							coords = get_sun(Time.Time(coordstime,format='gps'))
							tdelay[i] = lal.ArrivalTimeDiff(detH1.location, detL1.location, coords.ra.hour*np.pi/12, coords.dec.hour*np.pi/12, tgps)
	
	coordstime = seg30[-1]
	coords     = get_sun(Time.Time(coordstime,format='gps'))
	tdelay[-1] = lal.ArrivalTimeDiff(detH1.location, detL1.location, coords.ra.hour*np.pi/12, coords.dec.hour*np.pi/12, tgps)
	tdelay     = np.array(tdelay)
	tdelay     = np.repeat(tdelay,int(30/Xspacing))

	# make sure tdelay and timeL are of same length in case integer-ing caused slight inconsistency.
	b = np.ones(len(timeL)-len(tdelay))*tdelay[-1]
	tdelay = np.append(tdelay,b)
	timeL = timeL - tdelay
	

	#------------ Down-sampling ------------#
	print 'Down-sampling'
	Xspacing = Xspacing*8
	num_points = int(durationH/Xspacing)
	newtimeL, newtimeH, newstrainH, newstrainL, newtdelay = [[0 for _ in range(num_points)] for _ in range(5)]
	for i in range(num_points):
		j = 8*i + 4
		newstrainH[i] = np.mean(strainH[j-4:j+4])
		newstrainL[i] = np.mean(strainL[j-4:j+4])
		newtimeH[i]   = timeH[j]
		newtimeL[i]   = timeL[j]
		newtdelay[i]  = tdelay[j]

	newstrainH = newstrainH[76800:len(newstrainH)]
	newstrainL = newstrainL[76800:len(newstrainL)]
	newtimeH   = newtimeH[76800:len(newtimeH)]
	newtimeL   = newtimeL[76800:len(newtimeL)]
	newtdelay = newtdelay[76800:len(newtdelay)]
	starttime  = starttime + 150
	durationH  = int(newtimeH[-1]) - int(newtimeH[0])
	num_points = int(durationH/Xspacing)
	del timeL, timeH, tdelay, strainH, strainL
	#----------- add in fake signal ------------#
	newtimeH = newtimeH[0:num_points]
	newtimeL = newtimeL[0:num_points]
	newtdelay = newtdelay[0:num_points]
	print 'Insert fake signal'
        numseg = int((durationH)/600)
        segs = np.linspace(0,numseg,numseg+1)*600
        segs = segs + newtimeL[0]
	psi1=np.pi/4
        ra,dec,fp,fc = [[0 for _ in range(numseg+1)] for _ in range(4)]
        for i in range(numseg+1):
                coordstime = segs[i]
                coords = get_sun(Time.Time(coordstime,format='gps'))
                ra[i] = coords.ra.hour*np.pi/12
                dec[i] = coords.dec.hour*np.pi/12
	FcX0, FpX0, FcY0, FpY0 = [[0 for _ in range(num_points)] for _ in range(4)]
	for i in range(num_points):
		FpX0[i], FcX0[i] = ant_res(gpsTime[int(i*Xspacing/600.)], ra[int(i*Xspacing/600.)], dec[int(i*Xspacing/600.)], 0, 'H1')
		FpY0[i], FcY0[i] = ant_res(gpsTime[int(i*Xspacing/600.)], ra[int(i*Xspacing/600.)], dec[int(i*Xspacing/600.)], 0, 'L1')
	cos2pi1 = np.cos(2*psi1)
	sin2pi1 = np.sin(2*psi1)
	fakeH, fakeL, FpX, FcX, FpY, FcY = [[0 for _ in range(num_points)] for _ in range(6)]
	for i in range(num_points):
		FpX[i] = FpX0[i]*cos2pi1 + FcX0[i]*sin2pi1
		FcX[i] = FcX0[i]*cos2pi1 - FpX0[i]*sin2pi1
		FpY[i] = FpY0[i]*cos2pi1 + FcY0[i]*sin2pi1
		FcY[i] = FcY0[i]*cos2pi1 - FpY0[i]*sin2pi1
	for i in range(len(newtimeH)):
		fakeH[i] = amplitude*(FpX[i]*np.sin(omega*newtimeH[i]) + FcX[i]*np.cos(omega*newtimeH[i]))
		fakeL[i] = amplitude*(FpY[i]*np.sin(omega*newtimeL[i]) + FcY[i]*np.cos(omega*newtimeL[i]))
	tdelayidx  = [0 for _ in range(len(newtdelay))]
	for i in range(len(newtdelay)):
		tdelayidx[i] = int(newtdelay[i]*Xspacing)
	idxmax= np.max(tdelayidx)
	print len(newtdelay), len(newstrainL)
	newstrainL0,newstrainH0 = [[0 for _ in range(len(newtdelay)-idxmax)] for _ in range(2)]
	for i in range(idxmax,len(newtdelay)):
		newstrainL0[i-idxmax]=newstrainL[i-tdelayidx[i]]
	newstrainH0=newstrainH[0:len(newstrainL0)]

	newstrainH0 = newstrainH0 + fakeH
	newstrainL0 = newstrainL0 + fakeL
	del newstrainL, newstrainH, fakeL, fakeH
	# H1 and L1 are now in sync and filtered between 100 and 150 Hz.
	del FcX,FcX0,FpX,FpX0,FcY,FcY0,FpY,FpY0
	#----- Applying a bandpass filter -----#
	print 'Filtering data'
	coefsL = get_filter_coefs('L1')
	coefsH = get_filter_coefs('H1')
	newstrainL0 = np.array(newstrainL0)
	newstrainH0 = np.array(newstrainH0)
	newstrainL = filter_data(newstrainL0,coefsL)
	newstrainH = filter_data(newstrainH0,coefsH)
	del coefsL, coefsH
	############################################################
	#------------ Finding probability distribution ------------#
	#   ------------ Defining some stuff for p -------------   #
	print 'Finding likelihood Part 1/2'
	psi_array = np.linspace(0,np.pi,10)
	dpsi = psi_array[1]-psi_array[0]
	sigmaA = 10.0
	h0min = h0_min*np.std(newstrainH)
	h0max = h0_max*np.std(newstrainH)
	h0_array = np.linspace(h0min,h0max,h0_vals_num)
	invSigma0 = np.array([[(1./sigmaA**2), 0.], [0., (1./sigmaA**2)]])
	detSigma0 = sigmaA**4
	dX = newstrainH
	dY = newstrainL
	del newstrainH, newstrainL, newstrainH0, newstrainL0, newtimeL, newtimeH
	FcX0, FpX0, FcY0, FpY0 = [[0 for _ in range(num_points)] for _ in range(4)]
	for i in range(num_points):
		FpX0[i], FcX0[i] = ant_res(gpsTime[int(i*Xspacing/600.)], ra[int(i*Xspacing/600.)], dec[int(i*Xspacing/600.)], 0, 'H1')
		FpY0[i], FcY0[i] = ant_res(gpsTime[int(i*Xspacing/600.)], ra[int(i*Xspacing/600.)], dec[int(i*Xspacing/600.)], 0, 'L1')
	p = [0  for _ in range(len(h0_array))]
	ppsi = [0 for _ in range(len(psi_array))]
	logdpsi_2 = np.log(0.5*dpsi)

	cos2pi, sin2pi = [[0 for _ in range(len(psi_array))] for _ in range(2)]
	FpX, FcX, FpY, FcY = [[[0 for _ in range(num_points)] for _ in range(len(psi_array))] for _ in range(4)]
	for k in range(len(psi_array)):
		cos2pi[k] = np.cos(2*psi_array[k])
		sin2pi[k] = np.sin(2*psi_array[k])
		for i in range(num_points):
			FpX[k][i] = FpX0[i]*cos2pi[k] + FcX0[i]*sin2pi[k]
			FcX[k][i] = FcX0[i]*cos2pi[k] - FpX0[i]*sin2pi[k]
			FpY[k][i] = FpY0[i]*cos2pi[k] + FcY0[i]*sin2pi[k]
			FcY[k][i] = FcY0[i]*cos2pi[k] - FpY0[i]*sin2pi[k]
	print 'Finding likelihoot Part 2/2. This will take a while... '
	for i in range(num_points):
		d = np.array([dX[i], dY[i]])
		d.shape = (2,1)
		if (i + int(60/Xspacing)<num_points):
			int1 = i + int(60/Xspacing)
		else:
			int1 = i
		if (i - int(60/Xspacing)>0):
			int0 = i - int(60/Xspacing)
		else:
			int0 = 0
		sigmaX = np.std(dX[int0:int1])
		sigmaY = np.std(dY[int0:int1])
		C = np.array([[sigmaX**2, 0.], [0., sigmaY**2]])
		invC = np.array([[(1./sigmaX**2), 0.], [0., (1/sigmaY**2)]])
		detC = sigmaX**2 * sigmaY**2
		for j in range(len(h0_array)):
			for k in range(len(psi_array)):
				M = h0_array[j]*np.array([[FpX[k][i], FpY[k][i]], [FcX[k][i], FcY[k][i]]])
				M = np.array([[M[0][0][0],M[0][1][0]],[M[1][0][0], M[1][1][0]]])
				invSigma = np.dot(M.T, np.dot(invC, M)) + invSigma0
				Sigma = np.linalg.inv(invSigma)
				detSigma = np.linalg.det(Sigma)
				chi = np.dot(Sigma, np.dot(M.T, np.dot(invC, d)))
				ppsi[k]    = 0.5*np.log(detSigma) - 0.5*np.log(16.*np.pi**4*detSigma0*detC) -  0.5*(np.vdot(d.T, np.dot(invC, d)) + np.vdot(chi.T, np.dot(invSigma, chi)))
			p[j] += logdpsi_2 + logsumexp([logsumexp(ppsi[:-1]), logsumexp(ppsi[1:])])


	# Write into a file.
	wm = 'all/siginj'
	if os.path.exists(wm)==False:
		os.mkdir(wm)
	else:
		pass
	np.savetxt(wm+'/p'+str(oldstarttime)+'.txt',p)
	np.savetxt(wm+'/h0'+str(oldstarttime)+'.txt',h0_array)
Exemple #3
0
strainL0 = strainL
print 'Filtering data'
ord = 4
Wn = [100.0/2918.0,150.0/2918.0]
type = 'bandpass'
bL,aL = butter(ord,Wn, btype=type)
bH,aH = butter(ord,Wn, btype=type)
strainL1 = filtfilt(bL,aL,strainL)
strainH1 = filtfilt(bH,aH,strainH)
print 'Standard deviations before adding the notch-filters', np.std(strainL1), np.std(strainH1)


coefsL = get_filter_coefs('L1')
coefsH = get_filter_coefs('H1')
strainL2 = filter_data(strainL,coefsL)
strainH2 = filter_data(strainH,coefsH)

print 'Standard deviations after adding the notch-filters', np.std(strainL2), np.std(strainH2)

print 'Plotting'
plt.figure(1)
plt.plot(gpsTime,strainL0,'-')
plt.title('Raw data of L1 detector for '+str(durationH/60)+' minutes')
plt.xlabel('TimeSeries')
plt.ylabel('Strain')
plt.savefig('rawdata.png')
plt.show(1)
#
# plt.figure(2)
# plt.plot(gpsTime,strainH2,'-')