Exemple #1
0
def inpaint_tv(
        img,
        mask,
        mu=np.float32(1e-2),
        gamma=np.float32(1e-1),
        tol=np.float32(1e-4),
        max_iter=1000,
        verbose=False,
):
    """
    Total Variation Inpainting with Split Bregman method.
    """
    def masked_laplacian(x):
        px = convolve(x, dx)
        py = convolve(x, dy)
        qx = convolve(mask * px, dxT)
        qy = convolve(mask * py, dyT)
        return qx + qy

    def masked_divergence(px, py):
        qx = convolve(mask * px, dxT)
        qy = convolve(mask * py, dyT)
        return qx + qy

    def A(x):
        return (1 - mask) * x + gamma * masked_laplacian(x)

    d1, d2, b1, b2, uf, ul = [npcl.zeros_like(img) for _ in range(6)]
    img_norm = npcl.sum(img**2)

    for k in range(max_iter):
        # u-subproblem
        b = (1 - mask) * img + gamma * masked_divergence(d1 - b1, d2 - b2)
        ul, k_sub = solve_cg(A, b, uf, max_iter=10)
        # d-subproblem
        u1 = convolve(ul, dx)
        u2 = convolve(ul, dy)
        d1, d2 = shrink(u1 + b1, u2 + b2, mu * mask / gamma)
        b1 = b1 + u1 - d1
        b2 = b2 + u2 - d2
        gap = npcl.sum((ul - uf)**2) / img_norm
        if verbose is True:
            print(
                'iteration number: ',
                k + 1,
                ', gap: ',
                gap.get(),
            )
        if gap < tol**2:
            break
        uf = ul.copy()
    return uf, k
Exemple #2
0
def denoise_tv(image, weight=0.1, eps=2.e-4, n_iter_max=100):
    img_dev = image.copy()
    ndim = 2
    weight = np.float32(weight)
    eps = np.float32(eps)
    px = npcl.zeros_like(image)
    py = npcl.zeros_like(image)
    d = npcl.zeros_like(image)
    tau = np.float32(1/(2.*ndim))
    N = np.float32(img_dev.shape[0]*img_dev.shape[1])
    i = 0
    while i < n_iter_max:
        if i > 0:
            # d will be the (negative) divergence of p
            d = divergence2d(px, py)
            d = -d
            out = img_dev + d
        else:
            out = img_dev
        E = npcl.sum((d ** 2)).get()
        # (gx, gy) stores the gradients of out along each axis
        gx, gy = grad2d(out)
        norm = norm2d(gx, gy)
        E += weight*npcl.sum(norm).get()
        norm *= tau/weight
        norm += np.float32(1)
        px = px-tau*gx
        py = py-tau*gy
        px /= norm
        py /= norm
        E /= N
        if i == 0:
            E_init = E
            E_previous = E
        else:
            if np.abs(E_previous-E) < eps * E_init:
                break
            else:
                E_previous = E
        i += 1
    return out
Exemple #3
0
 def restart(y, x, xold):
     return npcl.sum((y - x) * (x - xold)).get() >= 0
Exemple #4
0
 def norms(x):
     return npcl.sum(x**2).get()
Exemple #5
0
 def norm(x):
     return npcl.sum(npcl.fabs(x)).get()