def __init__(self): super(ReNPN, self).__init__() self.dropout = args.dropout self.fc1 = NPNLinear(13, 50, False) self.relu1 = NPNRelu() self.fc2 = NPNLinear(50, 1)
def __init__(self): super(NPNCNN, self).__init__() self.dropout = args.dropout self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = NPNLinear(320, 50, dual_input=False) self.relu1 = NPNRelu() self.drop1 = NPNDropout(self.dropout) self.fc2 = NPNLinear(50, 10) self.sigmoid1 = NPNSigmoid()
def __init__(self): super(NPNNet, self).__init__() self.dropout = args.dropout self.fc1 = NPNLinear(784, 800, False) self.sigmoid1 = NPNSigmoid() #self.sigmoid1 = NPNRelu() self.fc2 = NPNLinear(800, 800) self.sigmoid2 = NPNSigmoid() #self.sigmoid2 = NPNRelu() self.fc3 = NPNLinear(800, 10) self.sigmoid3 = NPNSigmoid() self.drop1 = NPNDropout(self.dropout) self.drop2 = NPNDropout(self.dropout) self.drop3 = NPNDropout(self.dropout)