Exemple #1
0
def get_noise_factor(wavelet, level, dec, beam=None):
    # n = (250000)
    n = (200, 200)
    background = nputils.gaussian_noise(n, 0, 1)
    if beam is not None:
        background = beam.convolve(background)
    return get_noise_factor_from_background(wavelet, level, dec, background)
Exemple #2
0
def get_noise_factor(wavelet, level, dec, beam=None):
    # n = (250000)
    n = (200, 200)
    background = nputils.gaussian_noise(n, 0, 1)
    if beam is not None:
        background = beam.convolve(background)
    return get_noise_factor_from_background(wavelet, level, dec, background)
Exemple #3
0
def dec_noise_factor(dec, bg, beam=None, **kargs):
    if not isinstance(bg, np.ndarray):
        n = (200, 200)
        bg = nputils.gaussian_noise(n, 0, bg)
        if beam is not None:
            bg = beam.convolve(bg)
    scales = dec(bg, **kargs)
    return [scale.std() for scale in scales[:-1]]
Exemple #4
0
def dec_noise_factor(dec, bg, beam=None, **kargs):
    if not isinstance(bg, np.ndarray):
        n = (200, 200)
        bg = nputils.gaussian_noise(n, 0, bg)
        if beam is not None:
            bg = beam.convolve(bg)
    scales = dec(bg, **kargs)
    return [scale.std() for scale in scales[:-1]]