def get_porn(path: str) -> float: # Get p**n score result = 0 try: image = Image.open(path) sfw, nsfw = classify(image) result = nsfw except Exception as e: logger.warning(f"Get p**n error: {e}", exc_info=True) return result
def process(self): """ Analyze the given image """ try: logger.debug('Start analyzing the image') img = Image.open(self.file_path) img.convert('RGB') self.sfw_ratio, self.nsfw_ratio = classify(img) logger.debug('Ended analyzing the image') except IOError as e: logger.error("Exception with PIL Image: {}".format(e.message)) raise finally: remove(self.file_path)
def is_nsfw(self): """ Analyze the given image and return a boolean depending on the results of the neural network """ try: logger.debug('Start analyzing the image') img = Image.open(self.file_path) img.convert('RGB') _, nsfw = classify(img) return nsfw > 0.7 # Consider NSFW if ratio is higher than 0.7 except IOError as e: logger.error("Exception with PIL Image: {}".format(e.message)) return False finally: remove(self.file_path)
def check(): """ """ files = sys.argv[1:] if not files: print("""\ Usage: nsfwcheck files... """) return for path in files: image = Image.open(path) sfw, nsfw = classify(image) print("It is {} that this image is suitable for work.".format( probs(sfw))) print("It is {} that this image is *not* suitable for work.".format( probs(nsfw)))
import PIL.Image as Image from nsfw import classify from sys import argv import os try: image = Image.open(argv[1]) sfw, nsfw = classify(image) print(nsfw) os.remove(argv[1]) except Exception as err: print('Erro ao analisar imagem\nErr: ', err)
def analyze_file(filename): image = Image.open(filename) sfw, nsfw = classify(image) return nsfw
import nsfw img = 'p**n.jpeg' out = nsfw.classify(img) print(out) img = ['p**n.jpeg', 'd2.png'] out = nsfw.classify_many(img) print(out)