y_hline = np.recarray(X_hline.shape[0], dtype=y_dtype) results = np.recarray(0, dtype=[("train_id", "S16"), ("test_id", "S16"), ("min_diff", "f"), ("max_diff", "f"), ("samples", "i"), ("score", "f")]) # fit regressor on training data for train_id, rgr in regressors.items(): rgr.fit(X_train[train_id], y_train[train_id]) # compute and report initial score on test data for test_id, train_id in test_id2train_id.items(): rgr = regressors[train_id] sys_scores = rgr.predict(X_test[test_id]) postprocess(sys_input[test_id], sys_scores) r = correlation(sys_scores, y_test[test_id]) n = X_train[train_id].shape[0] results.resize(results.size + 1) if isinstance(train_id, tuple): train_id = "+".join(train_id) results[-1] = (train_id, test_id, 0, 0, n, r) print "{:32s} {:32s} {:>8d} {:8.4f}".format(train_id, test_id, n, r) # score headlines for train_id in hline_regressors: # TODO: full postprocessing scores = regressors[train_id].predict(X_hline) scores[scores < 0] = 0.0 scores[scores > 5] = 5.0 y_hline[train_id] = scores
("min_diff", "f"), ("max_diff", "f"), ("samples", "i"), ("iteration", "i"), ("score", "f")]) # fit regressor on training data for train_id, rgr in regressors.items(): rgr.fit(X_train[train_id], y_train[train_id]) # compute and report initial score on test data for test_id, train_id in test_id2train_id.items(): rgr = regressors[train_id] sys_scores = rgr.predict(X_test[test_id]) postprocess(sys_input[test_id], sys_scores) r = correlation(sys_scores, y_test[test_id]) n = X_train[train_id].shape[0] results.resize(results.size + 1) if isinstance(train_id, tuple): train_id = "+".join(train_id) results[-1] = (train_id, test_id, 0, 0, n, 0, r) print "{:32s} {:32s} {:>8d} {:8.4f}".format(train_id, test_id, n, r) # score headlines for train_id in hline_regressors: # TODO: full postprocessing scores = regressors[train_id].predict(X_hline) scores[scores < 0] = 0.0 scores[scores > 5] = 5.0 y_hline[train_id] = scores