def make_example(read, ref_bases): """Create a tf.Example for read and ref_bases. Args: read: nucleus.Read proto with cigar, fragment_name, and aligned_sequence. ref_bases: str. The reference bases for read. Returns: A tf.Example protobuf with the following features: read_name - for debugging convenience cigar - the cigar string of the read read_sequence - the bases observed by the instrument read_qualities - the quality scores emitted by the instrument, as phred-scaled integer values. true_sequence - the "true" bases that should have been observed for this read, as extracted from the reference genome. """ # Create our example proto. example = example_pb2.Example() # Set the features in our Example. # Note that the str(...) calls are necessary because proto string fields are # unicode objects and we can only add bytes to the bytes_list. features = example.features features.feature['read_name'].bytes_list.value.append( str(read.fragment_name)) features.feature['cigar'].bytes_list.value.append( cigar.format_cigar_units(read.alignment.cigar)) features.feature['read_sequence'].bytes_list.value.append( str(read.aligned_sequence)) features.feature['read_qualities'].int64_list.value.extend( read.aligned_quality) features.feature['true_sequence'].bytes_list.value.append(ref_bases) return example
def test_to_cigar_units(self, to_convert, expected): # We can convert the raw form. to_convert = list(to_convert) expected = list(expected) actual = cigar.to_cigar_units(to_convert) self.assertEqual(actual, expected) # We can also convert the string form by formatting actual. self.assertEqual( cigar.to_cigar_units(cigar.format_cigar_units(actual)), expected)
def test_format_cigar_units(self, cigar_units, expected): self.assertEqual(cigar.format_cigar_units(cigar_units), expected)
def make_ngs_error_examples(ref_path, vcf_path, bam_path, examples_out_path, max_reads=None): """Driver program for ngs_errors. See module description for details. Args: ref_path: str. A path to an indexed fasta file. vcf_path: str. A path to an indexed VCF file. bam_path: str. A path to an SAM/BAM file. examples_out_path: str. A path where we will write out examples. max_reads: int or None. If not None, we will emit at most max_reads examples to examples_out_path. """ # Create a ref_reader backed by ref. ref_reader = fasta.IndexedFastaReader(ref_path) # Create a vcf_reader backed by vcf. vcf_reader = vcf.VcfReader(vcf_path) # Create a sam_reader backed by bam. Provide an empty ReadRequirements # proto to the reader so it enables standard filtering based on the default # values of ReadRequirements. Also explicitly allow the reader to access an # unindexed BAM, so only the iterate() function is enabled. read_requirements = reads_pb2.ReadRequirements() sam_reader = sam.SamReader(bam_path, read_requirements=read_requirements) # Create our TFRecordWriter where we'll send our tf.Examples. examples_out = genomics_writer.TFRecordWriter(examples_out_path) # All our readers and writers are context managers, so use the `with` # construct to open all of the inputs/outputs and close them when we are done # looping over our reads. n_examples = 0 with ref_reader, vcf_reader, sam_reader, examples_out: # Loop over the reads in our BAM file: for i, read in enumerate(sam_reader.iterate(), start=1): # Get the Range proto describing the chrom/start/stop spanned by our read. read_range = utils.read_range(read) # Get all of the variants that overlap our read range. variants = list(vcf_reader.query(read_range)) # Get the reference bases spanned by our read. ref_bases = ref_reader.query(read_range) # Check that we can use our read for generating an example. if is_usable_training_example(read, variants, ref_bases): n_examples += 1 # Convert read and ref_bases to a tf.Example with make_example. example = make_example(read, ref_bases) # And write it out to our TFRecord output file. examples_out.write(example) # Do a bit of convenient logging. This is very verbose if we convert a # lot of reads... logging.info(( 'Added an example for read %s (span=%s) with cigar %s [%d added ' 'of %d total reads]'), read.fragment_name, ranges.to_literal(read_range), cigar.format_cigar_units(read.alignment.cigar), n_examples, i) if max_reads is not None and n_examples >= max_reads: return