Exemple #1
0
def make_example(read, ref_bases):
    """Create a tf.Example for read and ref_bases.

  Args:
    read: nucleus.Read proto with cigar, fragment_name, and aligned_sequence.
    ref_bases: str. The reference bases for read.

  Returns:
    A tf.Example protobuf with the following features:
      read_name - for debugging convenience
      cigar - the cigar string of the read
      read_sequence - the bases observed by the instrument
      read_qualities - the quality scores emitted by the instrument, as
                       phred-scaled integer values.
      true_sequence - the "true" bases that should have been observed for this
                      read, as extracted from the reference genome.
  """
    # Create our example proto.
    example = example_pb2.Example()

    # Set the features in our Example.
    # Note that the str(...) calls are necessary because proto string fields are
    # unicode objects and we can only add bytes to the bytes_list.
    features = example.features
    features.feature['read_name'].bytes_list.value.append(
        str(read.fragment_name))
    features.feature['cigar'].bytes_list.value.append(
        cigar.format_cigar_units(read.alignment.cigar))
    features.feature['read_sequence'].bytes_list.value.append(
        str(read.aligned_sequence))
    features.feature['read_qualities'].int64_list.value.extend(
        read.aligned_quality)
    features.feature['true_sequence'].bytes_list.value.append(ref_bases)

    return example
Exemple #2
0
    def test_to_cigar_units(self, to_convert, expected):
        # We can convert the raw form.
        to_convert = list(to_convert)
        expected = list(expected)

        actual = cigar.to_cigar_units(to_convert)
        self.assertEqual(actual, expected)

        # We can also convert the string form by formatting actual.
        self.assertEqual(
            cigar.to_cigar_units(cigar.format_cigar_units(actual)), expected)
Exemple #3
0
 def test_format_cigar_units(self, cigar_units, expected):
     self.assertEqual(cigar.format_cigar_units(cigar_units), expected)
Exemple #4
0
def make_ngs_error_examples(ref_path,
                            vcf_path,
                            bam_path,
                            examples_out_path,
                            max_reads=None):
    """Driver program for ngs_errors.

  See module description for details.

  Args:
    ref_path: str. A path to an indexed fasta file.
    vcf_path: str. A path to an indexed VCF file.
    bam_path: str. A path to an SAM/BAM file.
    examples_out_path: str. A path where we will write out examples.
    max_reads: int or None. If not None, we will emit at most max_reads examples
      to examples_out_path.
  """

    # Create a ref_reader backed by ref.
    ref_reader = fasta.IndexedFastaReader(ref_path)

    # Create a vcf_reader backed by vcf.
    vcf_reader = vcf.VcfReader(vcf_path)

    # Create a sam_reader backed by bam. Provide an empty ReadRequirements
    # proto to the reader so it enables standard filtering based on the default
    # values of ReadRequirements. Also explicitly allow the reader to access an
    # unindexed BAM, so only the iterate() function is enabled.
    read_requirements = reads_pb2.ReadRequirements()
    sam_reader = sam.SamReader(bam_path, read_requirements=read_requirements)

    # Create our TFRecordWriter where we'll send our tf.Examples.
    examples_out = genomics_writer.TFRecordWriter(examples_out_path)

    # All our readers and writers are context managers, so use the `with`
    # construct to open all of the inputs/outputs and close them when we are done
    # looping over our reads.
    n_examples = 0
    with ref_reader, vcf_reader, sam_reader, examples_out:
        # Loop over the reads in our BAM file:
        for i, read in enumerate(sam_reader.iterate(), start=1):
            # Get the Range proto describing the chrom/start/stop spanned by our read.
            read_range = utils.read_range(read)

            # Get all of the variants that overlap our read range.
            variants = list(vcf_reader.query(read_range))

            # Get the reference bases spanned by our read.
            ref_bases = ref_reader.query(read_range)

            # Check that we can use our read for generating an example.
            if is_usable_training_example(read, variants, ref_bases):
                n_examples += 1

                # Convert read and ref_bases to a tf.Example with make_example.
                example = make_example(read, ref_bases)

                # And write it out to our TFRecord output file.
                examples_out.write(example)

                # Do a bit of convenient logging. This is very verbose if we convert a
                # lot of reads...
                logging.info((
                    'Added an example for read %s (span=%s) with cigar %s [%d added '
                    'of %d total reads]'), read.fragment_name,
                             ranges.to_literal(read_range),
                             cigar.format_cigar_units(read.alignment.cigar),
                             n_examples, i)

                if max_reads is not None and n_examples >= max_reads:
                    return