Exemple #1
0
 def test_to_literal(self):
     self.assertEqual(ranges.to_literal(ranges.make_range('chr1', 0, 20)),
                      'chr1:1-20')
Exemple #2
0
def make_ngs_error_examples(ref_path,
                            vcf_path,
                            bam_path,
                            examples_out_path,
                            max_reads=None):
    """Driver program for ngs_errors.

  See module description for details.

  Args:
    ref_path: str. A path to an indexed fasta file.
    vcf_path: str. A path to an indexed VCF file.
    bam_path: str. A path to an SAM/BAM file.
    examples_out_path: str. A path where we will write out examples.
    max_reads: int or None. If not None, we will emit at most max_reads examples
      to examples_out_path.
  """

    # Create a ref_reader backed by ref.
    ref_reader = fasta.IndexedFastaReader(ref_path)

    # Create a vcf_reader backed by vcf.
    vcf_reader = vcf.VcfReader(vcf_path)

    # Create a sam_reader backed by bam. Provide an empty ReadRequirements
    # proto to the reader so it enables standard filtering based on the default
    # values of ReadRequirements. Also explicitly allow the reader to access an
    # unindexed BAM, so only the iterate() function is enabled.
    read_requirements = reads_pb2.ReadRequirements()
    sam_reader = sam.SamReader(bam_path, read_requirements=read_requirements)

    # Create our TFRecordWriter where we'll send our tf.Examples.
    examples_out = genomics_writer.TFRecordWriter(examples_out_path)

    # All our readers and writers are context managers, so use the `with`
    # construct to open all of the inputs/outputs and close them when we are done
    # looping over our reads.
    n_examples = 0
    with ref_reader, vcf_reader, sam_reader, examples_out:
        # Loop over the reads in our BAM file:
        for i, read in enumerate(sam_reader.iterate(), start=1):
            # Get the Range proto describing the chrom/start/stop spanned by our read.
            read_range = utils.read_range(read)

            # Get all of the variants that overlap our read range.
            variants = list(vcf_reader.query(read_range))

            # Get the reference bases spanned by our read.
            ref_bases = ref_reader.query(read_range)

            # Check that we can use our read for generating an example.
            if is_usable_training_example(read, variants, ref_bases):
                n_examples += 1

                # Convert read and ref_bases to a tf.Example with make_example.
                example = make_example(read, ref_bases)

                # And write it out to our TFRecord output file.
                examples_out.write(example)

                # Do a bit of convenient logging. This is very verbose if we convert a
                # lot of reads...
                logging.info((
                    'Added an example for read %s (span=%s) with cigar %s [%d added '
                    'of %d total reads]'), read.fragment_name,
                             ranges.to_literal(read_range),
                             cigar.format_cigar_units(read.alignment.cigar),
                             n_examples, i)

                if max_reads is not None and n_examples >= max_reads:
                    return