def get_init_assignments_for_lloyd(data, the_binwidths):
    # Lloyd can run into trouble if the most extreme assignment points are
    # larger in magnitude than the most extreme datapoints, which can happen
    # with the uniform quantization, so we just get rid of those initial points.
    assgnmnts, _, _, _ = uni(data, the_binwidths, placement_scheme='on_mean')
    min_data = np.min(data, axis=0)
    max_data = np.max(data, axis=0)
    if data.ndim == 1:
        min_coeff = np.where(min_data < 0, 0.9, 1.1)
        max_coeff = np.where(max_data < 0, 1.1, 0.9)
        min_mask = (assgnmnts <= min_coeff * min_data)
        max_mask = (assgnmnts >= max_coeff * max_data)
        zero_mask = min_mask + max_mask
    else:
        min_coeff = np.where(min_data < 0, 0.9, 1.1)
        max_coeff = np.where(max_data < 0, 1.1, 0.9)
        min_mask = np.any(assgnmnts[:, :] <= (min_coeff * min_data)[None, :],
                          axis=1)
        max_mask = np.any(assgnmnts[:, :] >= (max_coeff * max_data)[None, :],
                          axis=1)
        zero_mask = min_mask + max_mask
    num_apts_orig = assgnmnts.shape[0]
    num_apts_new = assgnmnts.shape[0] - len(zero_mask.nonzero()[0])
    assgnmnts = np.delete(assgnmnts, np.where(zero_mask), axis=0)
    print("Trimmed extreme assignment points: {} -> {}".format(
        num_apts_orig, num_apts_new))
    return assgnmnts
 def get_init_assignments_for_lloyd(data, the_binwidths):
     # Lloyd can run into trouble if the most extreme assignment points are
     # larger in magnitude than the most extreme datapoints, which can happen
     # with the uniform quantization, so we just get rid of those initial points.
     assgnmnts, _, _, _ = uni(data,
                              the_binwidths,
                              placement_scheme='on_mode')
     min_data = np.min(data, axis=0)
     max_data = np.max(data, axis=0)
     if data.ndim == 1:
         assgnmnts = np.delete(assgnmnts,
                               np.where(assgnmnts < 0.9 * min_data))
         assgnmnts = np.delete(assgnmnts,
                               np.where(assgnmnts > 0.9 * max_data))
         return assgnmnts
     else:
         assgnmnts = np.delete(
             assgnmnts,
             np.where(assgnmnts[:, 0] < 0.9 * min_data[0]),
             axis=0)
         assgnmnts = np.delete(
             assgnmnts,
             np.where(assgnmnts[:, 0] > 0.9 * max_data[0]),
             axis=0)
         assgnmnts = np.delete(
             assgnmnts,
             np.where(assgnmnts[:, 1] < 0.9 * min_data[1]),
             axis=0)
         assgnmnts = np.delete(
             assgnmnts,
             np.where(assgnmnts[:, 1] > 0.9 * max_data[1]),
             axis=0)
         return assgnmnts
                                random_laplacian_samps[:, i])
        pickle.dump(dummy_data, open(samples_fname, 'wb'))

    # # next uniform vector (Nd)
    uni_2d_rates = []
    uni_2d_MSEs = []
    uni_binwidth = list(np.linspace(8, 32, 50))
    for binwidth in uni_binwidth:
        print('RD curve, vector uniform, binwidth=', binwidth)
        uni_2d_MSE = []
        uni_2d_rate = []
        for cluster in range(int(DATA_DIM / QUANT_DIM)):
            cluster_data = dummy_data[:, cluster * QUANT_DIM:(cluster + 1) *
                                      QUANT_DIM]
            _, _, uni_2d_MSEc, uni_2d_ratec = uni(cluster_data,
                                                  np.array([binwidth] *
                                                           QUANT_DIM),
                                                  placement_scheme='on_mean')
            uni_2d_MSE.append(uni_2d_MSEc)
            uni_2d_rate.append(uni_2d_ratec)
        uni_2d_MSE = np.sum(np.array(uni_2d_MSE))
        uni_2d_rate = np.sum(np.array(uni_2d_rate))
        uni_2d_MSEs.append(uni_2d_MSE / DATA_DIM)
        uni_2d_rates.append(uni_2d_rate / DATA_DIM)

    # # next suboptimal generalized Lloyd (2d)
    # # Inefficient
    # gl_2d_rates = []
    # gl_2d_MSEs = []
    # for binwidth in np.linspace(8, 60, 50):
    # 	print('RD curve, suboptimal vector Lloyd, binwidth=', binwidth)
    # 	init_assignments, _, _, _ = uni(dummy_data, np.array([binwidth]*DATA_DIM),
def compute_quantization_wrapper(data,
                                 quant_method='uni',
                                 clusters=None,
                                 binwidth=1,
                                 placement_scheme='on_mean',
                                 lagrange_mult=1.,
                                 nn_method='brute_break',
                                 device='cpu'):
    """
    Parameters
        data: ndarray (d,n)
        quant_method: str {'uni', 'lloyd', 'opt_lloyd'}
        clusters: [cluster1, cluster2, ...] where cluster1 = [idx_1, idx_2, ...]
        binwidth: float or ndarray(n)
        placement_scheme: str {'on_mode', 'on_median', 'on_mean', 'on_zero'}
        lagrange_mult: float
        nn_method: str {'brute_np', 'brute_scipy', 'brute_break', 'kdtree'}
        device: str {'numpy', 'cpu', 'cuda', ...}
    Returns
        a_pts, c_ass, MSE, rate
    """
    data_dim = data.shape[1]
    if clusters is None:
        clusters = [list(range(data_dim))]
    if isinstance(binwidth, np.ndarray):
        assert (binwidth.shape == (data_dim, ))
    else:
        binwidth = np.array([float(binwidth)] * data_dim)

    a_pts_all = []
    c_ass_all = []
    MSE_total = 0
    rate_total = 0
    for cluster in clusters:
        cluster_dim = len(cluster)
        Xc = data[:, cluster]
        binwidth_c = binwidth[cluster]
        print('cluster of size {}:'.format(cluster_dim), cluster)
        if quant_method == 'uni':
            a_pts, c_ass, MSE, rate = uni(Xc,
                                          binwidth_c,
                                          placement_scheme=placement_scheme)
        elif quant_method == 'lloyd':
            init_apts, _, _, _ = uni(Xc,
                                     binwidth_c,
                                     placement_scheme=placement_scheme)
            a_pts, c_ass, MSE, rate = gl(Xc,
                                         init_apts,
                                         force_const_num_assignment_pts=False)
        elif quant_method == 'opt_lloyd':
            init_apts, _, _, _ = uni(Xc,
                                     binwidth_c,
                                     placement_scheme=placement_scheme)
            init_cword_len = (-1. * np.log2(1. / len(init_apts)) * np.ones(
                (len(init_apts), )))
            if device == 'numpy':
                a_pts, c_ass, MSE, rate = opt_gl_numpy(
                    Xc,
                    init_apts,
                    init_cword_len,
                    lagrange_mult=lagrange_mult,
                    nn_method=nn_method)
            else:
                try:
                    a_pts, c_ass, MSE, rate = opt_gl_torch(
                        Xc,
                        init_apts,
                        init_cword_len,
                        lagrange_mult=lagrange_mult,
                        nn_method=nn_method,
                        device=device)
                except RuntimeError as e:
                    # Cuda mem error; Use numpy
                    print("Runtime error: {}".format(e))
                    print("Switching to numpy")
                    a_pts, c_ass, MSE, rate = opt_gl_numpy(
                        Xc,
                        init_apts,
                        init_cword_len,
                        lagrange_mult=lagrange_mult,
                        nn_method=nn_method)

        else:
            raise ValueError("Invalid quant_method {}".format(quant_method))
        print('MSE', MSE, 'rate', rate)
        a_pts_all.append(a_pts)
        c_ass_all.append(c_ass)
        MSE_total += MSE
        rate_total += rate
    return a_pts_all, c_ass_all, MSE_total, rate_total
Exemple #5
0
def main():

    #############################################################################
    # first we'll visualize different solutions found uniform scalar quantization
    # as well as by the 4 variants of Lloyd that all have similar rates
    #############################################################################
    random_laplacian_samps = np.random.laplace(scale=10, size=(50000, 2))
    dummy_data = np.copy(random_laplacian_samps)
    dummy_data[:, 1] = (np.abs(random_laplacian_samps[:, 0]) +
                        random_laplacian_samps[:, 1])

    ############################################################
    # Uniform scalar quantization of each coefficient separately
    BINWIDTH_COMPONENT_0 = 11.
    BINWIDTH_COMPONENT_1 = 11.

    starttime = time.time()
    uni_apts_s0, uni_assignments_s0, uni_MSE_s0, uni_rate_s0 = uni(
        dummy_data[:, 0], BINWIDTH_COMPONENT_0, placement_scheme='on_mode')
    uni_apts_s1, uni_assignments_s1, uni_MSE_s1, uni_rate_s1 = uni(
        dummy_data[:, 1], BINWIDTH_COMPONENT_1, placement_scheme='on_mode')
    print("Time to compute uniform scalar quantizations:",
          time.time() - starttime)

    uni_fig_s0 = plot_1d_and_2d_assignments(
        uni_apts_s0,
        dummy_data[:, 0],
        uni_assignments_s0,
        'uniform_scalar',
        100,
        title='Uniform scalar quantization, component 0')
    uni_fig_s1 = plot_1d_and_2d_assignments(
        uni_apts_s1,
        dummy_data[:, 1],
        uni_assignments_s1,
        'uniform_scalar',
        100,
        title='Uniform scalar quantization, component 1')
    print('The rate for the uniform scalar quantizer is',
          (uni_rate_s0 + uni_rate_s1) / 2, 'bits per component')
    print('The MSE for the uniform scalar quantizer is',
          (uni_MSE_s0 + uni_MSE_s1) / 2, 'luminace units per component')
    print('===========================')

    def get_init_assignments_for_lloyd(data, the_binwidths):
        # Lloyd can run into trouble if the most extreme assignment points are
        # larger in magnitude than the most extreme datapoints, which can happen
        # with the uniform quantization, so we just get rid of those initial points.
        assgnmnts, _, _, _ = uni(data,
                                 the_binwidths,
                                 placement_scheme='on_mode')
        min_data = np.min(data, axis=0)
        max_data = np.max(data, axis=0)
        if data.ndim == 1:
            assgnmnts = np.delete(assgnmnts,
                                  np.where(assgnmnts < 0.9 * min_data))
            assgnmnts = np.delete(assgnmnts,
                                  np.where(assgnmnts > 0.9 * max_data))
            return assgnmnts
        else:
            mask_min = np.any(assgnmnts[:, :] < 0.9 * min_data[None, :],
                              axis=1)
            mask_max = np.any(assgnmnts[:, :] > 0.9 * max_data[None, :],
                              axis=1)
            assgnmnts = np.delete(assgnmnts,
                                  np.where(mask_min + mask_max),
                                  axis=0)
            return assgnmnts

    ##########################################################
    # Lloyd scalar quantization of each coefficient separately
    INIT_BW_C0 = 27  # we need way fewer in this case, bigger starting bins
    INIT_BW_C1 = 27
    starttime = time.time()
    init_assignments = get_init_assignments_for_lloyd(dummy_data[:, 0],
                                                      INIT_BW_C0)
    gl_apts_s0, gl_assignments_s0, gl_MSE_s0, gl_rate_s0 = gl(
        dummy_data[:, 0], init_assignments)

    init_assignments = get_init_assignments_for_lloyd(dummy_data[:, 1],
                                                      INIT_BW_C1)
    gl_apts_s1, gl_assignments_s1, gl_MSE_s1, gl_rate_s1 = gl(
        dummy_data[:, 1], init_assignments)
    print("Time to compute separate (suboptimal) scalar quantizations:",
          time.time() - starttime)

    gl_fig_s0 = plot_1d_and_2d_assignments(
        gl_apts_s0,
        dummy_data[:, 0],
        gl_assignments_s0,
        'lloyd_scalar',
        100,
        title='Suboptimal Lloyd scalar quantization, component 0')
    gl_fig_s1 = plot_1d_and_2d_assignments(
        gl_apts_s1,
        dummy_data[:, 1],
        gl_assignments_s1,
        'lloyd_scalar',
        100,
        title='Suboptimal Lloyd scalar quantization, component 1')
    print('The rate for the suboptimal scalar Lloyd quantizer is',
          (gl_rate_s0 + gl_rate_s1) / 2, 'bits per component')
    print('The MSE for the suboptial scalar Lloyd quantizer is',
          (gl_MSE_s0 + gl_MSE_s1) / 2, 'luminace units per component')
    print('===========================')

    #############################################################################
    # we'll try Lloyd scalar quantization again but this time the optimal version
    INIT_BW_C0 = 20
    INIT_BW_C1 = 20
    #^ We'll give ourselves more clusters, but turn up the lambda and these will
    # be pruned down. After some trial and error these settings give us something
    # close to the rate of the non-optimal version
    starttime = time.time()
    init_assignments = get_init_assignments_for_lloyd(dummy_data[:, 0],
                                                      INIT_BW_C0)
    init_cword_len = (-1. * np.log2(1. / len(init_assignments)) * np.ones(
        (len(init_assignments), )))
    opt_gl_apts_s0, opt_gl_assignments_s0, opt_gl_MSE_s0, opt_gl_rate_s0 = \
        opt_gl(dummy_data[:, 0], init_assignments,
               init_cword_len, lagrange_mult=0.6)

    init_assignments = get_init_assignments_for_lloyd(dummy_data[:, 1],
                                                      INIT_BW_C1)
    init_cword_len = (-1. * np.log2(1. / len(init_assignments)) * np.ones(
        (len(init_assignments), )))
    opt_gl_apts_s1, opt_gl_assignments_s1, opt_gl_MSE_s1, opt_gl_rate_s1 = \
        opt_gl(dummy_data[:, 1], init_assignments,
               init_cword_len, lagrange_mult=0.6)
    print("Time to compute separate (optimal) scalar quantizations:",
          time.time() - starttime)

    opt_gl_fig_s0 = plot_1d_and_2d_assignments(
        opt_gl_apts_s0,
        dummy_data[:, 0],
        opt_gl_assignments_s0,
        'optimal_lloyd_scalar',
        100,
        title='Optimal Lloyd scalar quantization, component 0')
    opt_gl_fig_s1 = plot_1d_and_2d_assignments(
        opt_gl_apts_s1,
        dummy_data[:, 1],
        opt_gl_assignments_s1,
        'optimal_lloyd_scalar',
        100,
        title='Optimal Lloyd scalar quantization, component 1')
    print('The rate for the optimal scalar Lloyd quantizer is',
          (opt_gl_rate_s0 + opt_gl_rate_s1) / 2, 'bits per component')
    print('The MSE for the optimal scalar Lloyd quantizer is',
          (opt_gl_MSE_s0 + opt_gl_MSE_s1) / 2, 'luminace units per component')
    print('===========================')

    # ##########################################
    # Now we can try Uniform VECTOR quantization
    BINWIDTHS = np.array([10., 10.])
    starttime = time.time()
    uni_2d_apts, uni_2d_assignments, uni_2d_MSE, uni_2d_rate = uni(
        dummy_data, BINWIDTHS, placement_scheme='on_mode')
    print("Time to compute uniform vector quantizations:",
          time.time() - starttime)

    uni_2d_fig_s0 = plot_1d_and_2d_assignments(
        uni_2d_apts,
        dummy_data,
        uni_2d_assignments,
        'uniform_vector',
        100,
        title='Uniform vector quantization')
    print('The rate for the uniform vector quantizer is', uni_2d_rate / 2,
          'bits per component')
    print('The MSE for the uniform vector quantizer is', uni_2d_MSE / 2,
          'luminace units per component')
    print('===========================')

    ##########################################################################
    # Now we use the generalized Lloyd to do joint encoding of both components
    BINWIDTHS = np.array([29., 30.])
    starttime = time.time()
    init_assignments = get_init_assignments_for_lloyd(dummy_data, BINWIDTHS)
    gl_2d_apts, gl_2d_assignments, gl_2d_MSE, gl_2d_rate = gl(
        dummy_data, init_assignments)
    print("Time to compute 2d (suboptimal) vector quantization:",
          time.time() - starttime)

    gl_2d_fig = plot_1d_and_2d_assignments(
        gl_2d_apts,
        dummy_data,
        gl_2d_assignments,
        'lloyd_vector',
        100,
        title='Generalized (vector) Lloyd quantization')
    print('The rate for the suboptimal 2d Lloyd quantizer is', gl_2d_rate / 2,
          'bits per component')
    print('The MSE for the suboptimal 2d Lloyd quantizer is', gl_2d_MSE / 2,
          'luminace units per component')
    print('===========================')

    #######################################################
    # We can compare this to the optimal generalized Lloyd
    BINWIDTHS = np.array([23., 24.])
    starttime = time.time()
    init_assignments = get_init_assignments_for_lloyd(dummy_data, BINWIDTHS)
    init_cword_len = (-1. * np.log2(1. / len(init_assignments)) * np.ones(
        (len(init_assignments), )))

    opt_gl_2d_apts, opt_gl_2d_assignments, opt_gl_2d_MSE, opt_gl_2d_rate = \
        opt_gl(dummy_data, init_assignments, init_cword_len, lagrange_mult=0.1)
    print("Time to compute 2d (optimal) vector quantization:",
          time.time() - starttime)

    opt_gl_2d_fig = plot_1d_and_2d_assignments(
        opt_gl_2d_apts,
        dummy_data,
        opt_gl_2d_assignments,
        'optimal_lloyd_vector',
        100,
        title='Optimal generalized (vector) Lloyd quantization')
    print('The rate for the optimal 2d Lloyd quantizer is', opt_gl_2d_rate / 2,
          'bits per component')
    print('The MSE for the optimal 2d Lloyd quantizer is', opt_gl_2d_MSE / 2,
          'luminace units per component')

    plt.show()

    ##########################################################################
    # Okay, now let's sweep out some rate-distortion curves using this dataset
    ##########################################################################
    # uniform scalar first
    uni_rates = []
    uni_MSEs = []
    for binwidth in np.linspace(4, 32, 50):
        _, _, uni_MSE_s0, uni_rate_s0 = uni(dummy_data[:, 0],
                                            binwidth,
                                            placement_scheme='on_mode')
        _, _, uni_MSE_s1, uni_rate_s1 = uni(dummy_data[:, 1],
                                            binwidth,
                                            placement_scheme='on_mode')
        uni_rates.append((uni_rate_s0 + uni_rate_s1) / 2)
        uni_MSEs.append((uni_MSE_s0 + uni_MSE_s1) / 2)

    # for the Lloyd curves I'm going to start the initialization in exactly
    # the same places as the uniform so we can see the improvement that Optimal
    # Lloyd provides

    # suboptimal scalar Lloyd
    gl_rates = []
    gl_MSEs = []
    for binwidth in np.linspace(4, 32, 50):
        print('RD curve, suboptimal scalar lloyd, binwidth=', binwidth)
        init_assignments, _, _, _ = uni(dummy_data[:, 0],
                                        binwidth,
                                        placement_scheme='on_mode')
        _, _, gl_MSE_s0, gl_rate_s0 = gl(dummy_data[:, 0],
                                         init_assignments,
                                         force_const_num_assignment_pts=False)
        #^ make this correspond to optimal lloyd with lambda=0.0.
        init_assignments, _, _, _ = uni(dummy_data[:, 1],
                                        binwidth,
                                        placement_scheme='on_mode')
        _, _, gl_MSE_s1, gl_rate_s1 = gl(dummy_data[:, 1],
                                         init_assignments,
                                         force_const_num_assignment_pts=False)
        #^ make this correspond to optimal lloyd with lambda=0.0.
        gl_rates.append((gl_rate_s0 + gl_rate_s1) / 2)
        gl_MSEs.append((gl_MSE_s0 + gl_MSE_s1) / 2)

    # next optimal scalar Lloyd
    opt_gl_rates = []
    opt_gl_MSEs = []
    binwidth = 4
    for lagrange_w in np.linspace(0.0, 4.0, 50):
        print('RD curve, optimal scalar lloyd, lagrange mult=', lagrange_w)
        init_assignments, _, _, _ = uni(dummy_data[:, 0],
                                        binwidth,
                                        placement_scheme='on_mode')
        init_cword_len = (-1. * np.log2(1. / len(init_assignments)) * np.ones(
            (len(init_assignments), )))
        _, _, opt_gl_MSE_s0, opt_gl_rate_s0 = opt_gl(dummy_data[:, 0],
                                                     init_assignments,
                                                     init_cword_len,
                                                     lagrange_mult=lagrange_w)
        init_assignments, _, _, _ = uni(dummy_data[:, 1],
                                        binwidth,
                                        placement_scheme='on_mode')
        init_cword_len = (-1. * np.log2(1. / len(init_assignments)) * np.ones(
            (len(init_assignments), )))
        _, _, opt_gl_MSE_s1, opt_gl_rate_s1 = opt_gl(dummy_data[:, 1],
                                                     init_assignments,
                                                     init_cword_len,
                                                     lagrange_mult=lagrange_w)
        opt_gl_rates.append((opt_gl_rate_s0 + opt_gl_rate_s1) / 2)
        opt_gl_MSEs.append((opt_gl_MSE_s0 + opt_gl_MSE_s1) / 2)

    # plot the three scalar variants
    plt.figure(figsize=(20, 20))
    plt.plot(uni_MSEs, uni_rates, label='Uniform Scalar', linewidth=4)
    plt.plot(gl_MSEs, gl_rates, label='Suboptimal Scalar Lloyd', linewidth=4)
    plt.plot(opt_gl_MSEs,
             opt_gl_rates,
             label='Optimal Scalar Lloyd',
             linewidth=4)
    plt.legend(fontsize=15)
    plt.title('Rate-distortion performance of different scalar quantization ' +
              'schemes',
              fontsize=20)
    plt.xlabel('Distortion (Mean squared error)', fontsize=15)
    plt.ylabel('Rate (bits per component)', fontsize=15)

    # next uniform vector (2d)
    uni_2d_rates = []
    uni_2d_MSEs = []
    for binwidth in np.linspace(8, 32, 50):
        _, _, uni_2d_MSE, uni_2d_rate = uni(dummy_data,
                                            np.array([binwidth, binwidth]),
                                            placement_scheme='on_mode')
        uni_2d_rates.append(uni_2d_rate / 2)
        uni_2d_MSEs.append(uni_2d_MSE / 2)

    # next suboptimal generalized Lloyd (2d)
    gl_2d_rates = []
    gl_2d_MSEs = []
    for binwidth in np.linspace(8, 60, 50):
        print('RD curve, suboptimal vector Lloyd, binwidth=', binwidth)
        init_assignments, _, _, _ = uni(dummy_data,
                                        np.array([binwidth, binwidth]),
                                        placement_scheme='on_mode')
        _, _, gl_2d_MSE, gl_2d_rate = gl(dummy_data,
                                         init_assignments,
                                         force_const_num_assignment_pts=False)
        #^ make this correspond to optimal lloyd with lambda=0.0.
        gl_2d_rates.append(gl_2d_rate / 2)
        gl_2d_MSEs.append(gl_2d_MSE / 2)

    # finally, the optimal generalized Lloyd
    opt_gl_2d_rates = []
    opt_gl_2d_MSEs = []
    binwidth = 8
    for lagrange_w in np.linspace(0.0, 4.0, 50):
        print('RD curve, optimal vector Lloyd, lagrange mult=', lagrange_w)
        init_assignments, _, _, _ = uni(dummy_data,
                                        np.array([binwidth, binwidth]),
                                        placement_scheme='on_mode')
        init_cword_len = (-1. * np.log2(1. / len(init_assignments)) * np.ones(
            (len(init_assignments), )))
        _, _, opt_gl_2d_MSE, opt_gl_2d_rate = opt_gl(dummy_data,
                                                     init_assignments,
                                                     init_cword_len,
                                                     lagrange_mult=lagrange_w)
        opt_gl_2d_rates.append(opt_gl_2d_rate / 2)
        opt_gl_2d_MSEs.append(opt_gl_2d_MSE / 2)

    # plot the three 2D variants
    plt.figure(figsize=(20, 20))
    plt.plot(uni_2d_MSEs, uni_2d_rates, label='Uniform 2D', linewidth=4)
    plt.plot(gl_2d_MSEs, gl_2d_rates, label='Suboptimal 2D Lloyd', linewidth=4)
    plt.plot(opt_gl_2d_MSEs,
             opt_gl_2d_rates,
             label='Optimal 2D Lloyd',
             linewidth=4)
    plt.legend(fontsize=15)
    plt.title('Rate-distortion performance of different vector quantization ' +
              'schemes',
              fontsize=20)
    plt.xlabel('Distortion (Mean squared error)', fontsize=15)
    plt.ylabel('Rate (bits per component)', fontsize=15)

    # plot all the variants together
    plt.figure(figsize=(20, 20))
    plt.plot(uni_MSEs, uni_rates, label='Uniform Scalar', linewidth=4)
    plt.plot(gl_MSEs, gl_rates, label='Suboptimal Scalar Lloyd', linewidth=4)
    plt.plot(opt_gl_MSEs,
             opt_gl_rates,
             label='Optimal Scalar Lloyd',
             linewidth=4)
    plt.plot(uni_2d_MSEs, uni_2d_rates, label='Uniform 2D', linewidth=4)
    plt.plot(gl_2d_MSEs, gl_2d_rates, label='Suboptimal 2D Lloyd', linewidth=4)
    plt.plot(opt_gl_2d_MSEs,
             opt_gl_2d_rates,
             label='Optimal 2D Lloyd',
             linewidth=4)
    plt.legend(fontsize=15)
    plt.title('Rate-distortion performance of 4 variants ' +
              'of Lloyd/LBG\nplus 2 variants of uniform quantization',
              fontsize=20)
    plt.xlabel('Distortion (Mean squared error)', fontsize=15)
    plt.ylabel('Rate (bits per component)', fontsize=15)

    plt.show()