Exemple #1
0
    def wrapper(func):
        if extending.is_jitted(func):
            raise TypeError(
                "A jit decorator was called on an already jitted function "
                f"{func}.  If trying to access the original python "
                f"function, use the {func}.py_func attribute.")

        if not inspect.isfunction(func):
            raise TypeError("The decorated object is not a function (got type "
                            f"{type(func)}).")

        if config.ENABLE_CUDASIM and target == 'cuda':
            from numba import cuda
            return cuda.jit(func)
        if config.DISABLE_JIT and not target == 'npyufunc':
            return func
        disp = dispatcher(py_func=func,
                          locals=locals,
                          targetoptions=targetoptions,
                          **dispatcher_args)
        if cache:
            disp.enable_caching()
        if sigs is not None:
            # Register the Dispatcher to the type inference mechanism,
            # even though the decorator hasn't returned yet.
            from numba.core import typeinfer
            with typeinfer.register_dispatcher(disp):
                for sig in sigs:
                    disp.compile(sig)
                disp.disable_compile()
        return disp
Exemple #2
0
 def __init__(self, py_func, identity=None, cache=False, targetoptions={}):
     if is_jitted(py_func):
         py_func = py_func.py_func
     self.py_func = py_func
     self.identity = parse_identity(identity)
     self.nb_func = jit(_target='npyufunc', cache=cache,
                        **targetoptions)(py_func)
     self._sigs = []
     self._cres = {}
Exemple #3
0
 def __init__(self, py_func, identity=None, cache=False, targetoptions={}):
     if is_jitted(py_func):
         py_func = py_func.py_func
     dispatcher = jit(_target='npyufunc', cache=cache,
                      **targetoptions)(py_func)
     self._initialize(dispatcher, identity)