def do_prune(take_truebr, blk):
     keep = branch.truebr if take_truebr else branch.falsebr
     # replace the branch with a direct jump
     jmp = ir.Jump(keep, loc=branch.loc)
     blk.body[-1] = jmp
     return 1 if keep == branch.truebr else 0
Exemple #2
0
 def op_JUMP_FORWARD(self, inst):
     jmp = ir.Jump(inst.get_jump_target(), loc=self.loc)
     self.current_block.append(jmp)
Exemple #3
0
 def test_jump(self):
     a = ir.Jump(1, self.loc1)
     b = ir.Jump(1, self.loc1)
     c = ir.Jump(1, self.loc2)
     d = ir.Jump(2, self.loc1)
     self.check(a, same=[b, c], different=[d])
Exemple #4
0
def _create_gufunc_for_parfor_body(
    lowerer,
    parfor,
    typemap,
    typingctx,
    targetctx,
    flags,
    loop_ranges,
    locals,
    has_aliases,
    index_var_typ,
    races,
):
    """
    Takes a parfor and creates a gufunc function for its body. There
    are two parts to this function:

        1) Code to iterate across the iteration space as defined by
           the schedule.
        2) The parfor body that does the work for a single point in
           the iteration space.

    Part 1 is created as Python text for simplicity with a sentinel
    assignment to mark the point in the IR where the parfor body
    should be added. This Python text is 'exec'ed into existence and its
    IR retrieved with run_frontend. The IR is scanned for the sentinel
    assignment where that basic block is split and the IR for the parfor
    body inserted.
    """

    loc = parfor.init_block.loc

    # The parfor body and the main function body share ir.Var nodes.
    # We have to do some replacements of Var names in the parfor body
    # to make them legal parameter names. If we don't copy then the
    # Vars in the main function also would incorrectly change their name.

    loop_body = copy.copy(parfor.loop_body)
    remove_dels(loop_body)

    parfor_dim = len(parfor.loop_nests)
    loop_indices = [l.index_variable.name for l in parfor.loop_nests]

    # Get all the parfor params.
    parfor_params = parfor.params

    for start, stop, step in loop_ranges:
        if isinstance(start, ir.Var):
            parfor_params.add(start.name)
        if isinstance(stop, ir.Var):
            parfor_params.add(stop.name)

    # Get just the outputs of the parfor.
    parfor_outputs = numba.parfors.parfor.get_parfor_outputs(
        parfor, parfor_params)

    # Get all parfor reduction vars, and operators.
    typemap = lowerer.fndesc.typemap

    parfor_redvars, parfor_reddict = numba.parfors.parfor.get_parfor_reductions(
        lowerer.func_ir, parfor, parfor_params, lowerer.fndesc.calltypes)
    has_reduction = False if len(parfor_redvars) == 0 else True

    if has_reduction:
        _create_gufunc_for_reduction_parfor()

    # Compute just the parfor inputs as a set difference.
    parfor_inputs = sorted(list(set(parfor_params) - set(parfor_outputs)))

    for race in races:
        msg = ("Variable %s used in parallel loop may be written "
               "to simultaneously by multiple workers and may result "
               "in non-deterministic or unintended results." % race)
        warnings.warn(NumbaParallelSafetyWarning(msg, loc))
    replace_var_with_array(races, loop_body, typemap, lowerer.fndesc.calltypes)

    if config.DEBUG_ARRAY_OPT >= 1:
        print("parfor_params = ", parfor_params, type(parfor_params))
        print("parfor_outputs = ", parfor_outputs, type(parfor_outputs))
        print("parfor_inputs = ", parfor_inputs, type(parfor_inputs))

    # Reorder all the params so that inputs go first then outputs.
    parfor_params = parfor_inputs + parfor_outputs

    def addrspace_from(params, def_addr):
        addrspaces = []
        for p in params:
            if isinstance(to_scalar_from_0d(typemap[p]), types.npytypes.Array):
                addrspaces.append(def_addr)
            else:
                addrspaces.append(None)
        return addrspaces

    addrspaces = addrspace_from(parfor_params, address_space.GLOBAL)

    if config.DEBUG_ARRAY_OPT >= 1:
        print("parfor_params = ", parfor_params, type(parfor_params))
        print("loop_indices = ", loop_indices, type(loop_indices))
        print("loop_body = ", loop_body, type(loop_body))
        _print_body(loop_body)

    # Some Var are not legal parameter names so create a dict of
    # potentially illegal param name to guaranteed legal name.
    param_dict = legalize_names_with_typemap(parfor_params, typemap)
    if config.DEBUG_ARRAY_OPT >= 1:
        print("param_dict = ", sorted(param_dict.items()), type(param_dict))

    # Some loop_indices are not legal parameter names so create a dict
    # of potentially illegal loop index to guaranteed legal name.
    ind_dict = legalize_names_with_typemap(loop_indices, typemap)
    # Compute a new list of legal loop index names.
    legal_loop_indices = [ind_dict[v] for v in loop_indices]

    if config.DEBUG_ARRAY_OPT >= 1:
        print("ind_dict = ", sorted(ind_dict.items()), type(ind_dict))
        print(
            "legal_loop_indices = ",
            legal_loop_indices,
            type(legal_loop_indices),
        )

        for pd in parfor_params:
            print("pd = ", pd)
            print("pd type = ", typemap[pd], type(typemap[pd]))

    # Get the types of each parameter.
    param_types = [to_scalar_from_0d(typemap[v]) for v in parfor_params]

    param_types_addrspaces = copy.copy(param_types)

    # Calculate types of args passed to gufunc.
    func_arg_types = [typemap[v] for v in (parfor_inputs + parfor_outputs)]
    assert len(param_types_addrspaces) == len(addrspaces)
    for i in range(len(param_types_addrspaces)):
        if addrspaces[i] is not None:
            # Convert Numba's npytype.Array to DPPYArray data type. DPPYArray
            # allows us to specify an address space for the data and other
            # pointer arguments for the array.
            param_types_addrspaces[i] = npytypes_array_to_dppy_array(
                param_types_addrspaces[i], addrspaces[i])

    def print_arg_with_addrspaces(args):
        for a in args:
            print(a, type(a))
            if isinstance(a, types.npytypes.Array):
                print("addrspace:", a.addrspace)

    if config.DEBUG_ARRAY_OPT >= 1:
        print_arg_with_addrspaces(param_types)
        print("func_arg_types = ", func_arg_types, type(func_arg_types))

    # Replace illegal parameter names in the loop body with legal ones.
    replace_var_names(loop_body, param_dict)
    # remember the name before legalizing as the actual arguments
    parfor_args = parfor_params
    # Change parfor_params to be legal names.
    parfor_params = [param_dict[v] for v in parfor_params]
    parfor_params_orig = parfor_params

    parfor_params = []
    ascontig = False
    for pindex in range(len(parfor_params_orig)):
        if (ascontig and pindex < len(parfor_inputs)
                and isinstance(param_types[pindex], types.npytypes.Array)):
            parfor_params.append(parfor_params_orig[pindex] + "param")
        else:
            parfor_params.append(parfor_params_orig[pindex])

    # Change parfor body to replace illegal loop index vars with legal ones.
    replace_var_names(loop_body, ind_dict)
    loop_body_var_table = get_name_var_table(loop_body)
    sentinel_name = get_unused_var_name("__sentinel__", loop_body_var_table)

    if config.DEBUG_ARRAY_OPT >= 1:
        print("legal parfor_params = ", parfor_params, type(parfor_params))

    # Determine the unique names of the scheduling and gufunc functions.
    gufunc_name = "__numba_parfor_gufunc_%s" % (parfor.id)

    if config.DEBUG_ARRAY_OPT:
        # print("sched_func_name ", type(sched_func_name), sched_func_name)
        print("gufunc_name ", type(gufunc_name), gufunc_name)

    gufunc_txt = ""

    # Create the gufunc function.
    gufunc_txt += "def " + gufunc_name
    gufunc_txt += "(" + (", ".join(parfor_params)) + "):\n"

    gufunc_txt += _schedule_loop(parfor_dim, legal_loop_indices, loop_ranges,
                                 param_dict)

    # Add the sentinel assignment so that we can find the loop body position
    # in the IR.
    gufunc_txt += "    "
    gufunc_txt += sentinel_name + " = 0\n"

    # gufunc returns nothing
    gufunc_txt += "    return None\n"

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_txt = ", type(gufunc_txt), "\n", gufunc_txt)
        sys.stdout.flush()
    # Force gufunc outline into existence.
    globls = {"np": np, "numba": numba, "dppy": dppy}
    locls = {}
    exec(gufunc_txt, globls, locls)
    gufunc_func = locls[gufunc_name]

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_func = ", type(gufunc_func), "\n", gufunc_func)
    # Get the IR for the gufunc outline.
    gufunc_ir = compiler.run_frontend(gufunc_func)

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir dump ", type(gufunc_ir))
        gufunc_ir.dump()
        print("loop_body dump ", type(loop_body))
        _print_body(loop_body)

    # rename all variables in gufunc_ir afresh
    var_table = get_name_var_table(gufunc_ir.blocks)
    new_var_dict = {}
    reserved_names = ([sentinel_name] + list(param_dict.values()) +
                      legal_loop_indices)
    for name, var in var_table.items():
        if not (name in reserved_names):
            new_var_dict[name] = mk_unique_var(name)
    replace_var_names(gufunc_ir.blocks, new_var_dict)
    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir dump after renaming ")
        gufunc_ir.dump()

    prs_dict = {}
    pss_dict = {}
    pspmd_dict = {}

    gufunc_param_types = param_types

    if config.DEBUG_ARRAY_OPT:
        print(
            "gufunc_param_types = ",
            type(gufunc_param_types),
            "\n",
            gufunc_param_types,
        )

    gufunc_stub_last_label = max(gufunc_ir.blocks.keys()) + 1

    # Add gufunc stub last label to each parfor.loop_body label to prevent
    # label conflicts.
    loop_body = add_offset_to_labels(loop_body, gufunc_stub_last_label)
    # new label for splitting sentinel block
    new_label = max(loop_body.keys()) + 1

    # If enabled, add a print statement after every assignment.
    if config.DEBUG_ARRAY_OPT_RUNTIME:
        _dbgprint_after_each_array_assignments(lowerer, loop_body, typemap)

    if config.DEBUG_ARRAY_OPT:
        print("parfor loop body")
        _print_body(loop_body)

    wrapped_blocks = wrap_loop_body(loop_body)
    # hoisted, not_hoisted = hoist(parfor_params, loop_body,
    #                             typemap, wrapped_blocks)
    setitems = set()
    find_setitems_body(setitems, loop_body, typemap)

    hoisted = []
    not_hoisted = []

    start_block = gufunc_ir.blocks[min(gufunc_ir.blocks.keys())]
    start_block.body = start_block.body[:-1] + hoisted + [start_block.body[-1]]
    unwrap_loop_body(loop_body)

    # store hoisted into diagnostics
    diagnostics = lowerer.metadata["parfor_diagnostics"]
    diagnostics.hoist_info[parfor.id] = {
        "hoisted": hoisted,
        "not_hoisted": not_hoisted,
    }

    lowerer.metadata["parfor_diagnostics"].extra_info[str(parfor.id)] = str(
        dpctl.get_current_queue().get_sycl_device().name)

    if config.DEBUG_ARRAY_OPT:
        print("After hoisting")
        _print_body(loop_body)

    # Search all the block in the gufunc outline for the sentinel assignment.
    for label, block in gufunc_ir.blocks.items():
        for i, inst in enumerate(block.body):
            if (isinstance(inst, ir.Assign)
                    and inst.target.name == sentinel_name):
                # We found the sentinel assignment.
                loc = inst.loc
                scope = block.scope
                # split block across __sentinel__
                # A new block is allocated for the statements prior to the
                # sentinel but the new block maintains the current block label.
                prev_block = ir.Block(scope, loc)
                prev_block.body = block.body[:i]

                # The current block is used for statements after the sentinel.
                block.body = block.body[i + 1:]
                # But the current block gets a new label.
                body_first_label = min(loop_body.keys())

                # The previous block jumps to the minimum labelled block of the
                # parfor body.
                prev_block.append(ir.Jump(body_first_label, loc))
                # Add all the parfor loop body blocks to the gufunc function's
                # IR.
                for (l, b) in loop_body.items():
                    gufunc_ir.blocks[l] = b
                body_last_label = max(loop_body.keys())
                gufunc_ir.blocks[new_label] = block
                gufunc_ir.blocks[label] = prev_block
                # Add a jump from the last parfor body block to the block
                # containing statements after the sentinel.
                gufunc_ir.blocks[body_last_label].append(
                    ir.Jump(new_label, loc))
                break
        else:
            continue
        break

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir last dump before renaming")
        gufunc_ir.dump()

    gufunc_ir.blocks = rename_labels(gufunc_ir.blocks)
    remove_dels(gufunc_ir.blocks)

    if config.DEBUG_ARRAY_OPT:
        sys.stdout.flush()

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir last dump")
        gufunc_ir.dump()
        print("flags", flags)
        print("typemap", typemap)

    old_alias = flags.noalias
    if not has_aliases:
        if config.DEBUG_ARRAY_OPT:
            print("No aliases found so adding noalias flag.")
        flags.noalias = True

    remove_dead(gufunc_ir.blocks, gufunc_ir.arg_names, gufunc_ir, typemap)

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir after remove dead")
        gufunc_ir.dump()

    kernel_sig = signature(types.none, *gufunc_param_types)

    if config.DEBUG_ARRAY_OPT:
        sys.stdout.flush()

    if config.DEBUG_ARRAY_OPT:
        print("before DUFunc inlining".center(80, "-"))
        gufunc_ir.dump()

    # Inlining all DUFuncs
    dufunc_inliner(
        gufunc_ir,
        lowerer.fndesc.calltypes,
        typemap,
        lowerer.context.typing_context,
        lowerer.context,
    )

    if config.DEBUG_ARRAY_OPT:
        print("after DUFunc inline".center(80, "-"))
        gufunc_ir.dump()

    kernel_func = numba_dppy.compiler.compile_kernel_parfor(
        dpctl.get_current_queue(),
        gufunc_ir,
        gufunc_param_types,
        param_types_addrspaces,
        debug=flags.debuginfo,
    )

    flags.noalias = old_alias

    if config.DEBUG_ARRAY_OPT:
        print("kernel_sig = ", kernel_sig)

    return kernel_func, parfor_args, kernel_sig, func_arg_types, setitems
Exemple #5
0
    def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes,
                         *args):
        # Overall approach:
        # 1) Construct a string containing a function definition for the stencil function
        #    that will execute the stencil kernel.  This function definition includes a
        #    unique stencil function name, the parameters to the stencil kernel, loop
        #    nests across the dimensions of the input array.  Those loop nests use the
        #    computed stencil kernel size so as not to try to compute elements where
        #    elements outside the bounds of the input array would be needed.
        # 2) The but of the loop nest in this new function is a special sentinel
        #    assignment.
        # 3) Get the IR of this new function.
        # 4) Split the block containing the sentinel assignment and remove the sentinel
        #    assignment.  Insert the stencil kernel IR into the stencil function IR
        #    after label and variable renaming of the stencil kernel IR to prevent
        #    conflicts with the stencil function IR.
        # 5) Compile the combined stencil function IR + stencil kernel IR into existence.

        # Copy the kernel so that our changes for this callsite
        # won't effect other callsites.
        (kernel_copy,
         copy_calltypes) = self.copy_ir_with_calltypes(self.kernel_ir,
                                                       calltypes)
        # The stencil kernel body becomes the body of a loop, for which args aren't needed.
        ir_utils.remove_args(kernel_copy.blocks)
        first_arg = kernel_copy.arg_names[0]

        in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap)
        name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks)
        ir_utils.apply_copy_propagate(kernel_copy.blocks, in_cps,
                                      name_var_table, typemap, copy_calltypes)

        if "out" in name_var_table:
            raise ValueError(
                "Cannot use the reserved word 'out' in stencil kernels.")

        sentinel_name = ir_utils.get_unused_var_name("__sentinel__",
                                                     name_var_table)
        if config.DEBUG_ARRAY_OPT >= 1:
            print("name_var_table", name_var_table, sentinel_name)

        the_array = args[0]

        if config.DEBUG_ARRAY_OPT >= 1:
            print("_stencil_wrapper", return_type, return_type.dtype,
                  type(return_type.dtype), args)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # We generate a Numba function to execute this stencil and here
        # create the unique name of this function.
        stencil_func_name = "__numba_stencil_%s_%s" % (hex(
            id(the_array)).replace("-", "_"), self.id)

        # We will put a loop nest in the generated function for each
        # dimension in the input array.  Here we create the name for
        # the index variable for each dimension.  index0, index1, ...
        index_vars = []
        for i in range(the_array.ndim):
            index_var_name = ir_utils.get_unused_var_name(
                "index" + str(i), name_var_table)
            index_vars += [index_var_name]

        # Create extra signature for out and neighborhood.
        out_name = ir_utils.get_unused_var_name("out", name_var_table)
        neighborhood_name = ir_utils.get_unused_var_name(
            "neighborhood", name_var_table)
        sig_extra = ""
        if result is not None:
            sig_extra += ", {}=None".format(out_name)
        if "neighborhood" in dict(self.kws):
            sig_extra += ", {}=None".format(neighborhood_name)

        # Get a list of the standard indexed array names.
        standard_indexed = self.options.get("standard_indexing", [])

        if first_arg in standard_indexed:
            raise ValueError("The first argument to a stencil kernel must "
                             "use relative indexing, not standard indexing.")

        if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0:
            raise ValueError("Standard indexing requested for an array name "
                             "not present in the stencil kernel definition.")

        # Add index variables to getitems in the IR to transition the accesses
        # in the kernel from relative to regular Python indexing.  Returns the
        # computed size of the stencil kernel and a list of the relatively indexed
        # arrays.
        kernel_size, relatively_indexed = self.add_indices_to_kernel(
            kernel_copy, index_vars, the_array.ndim, self.neighborhood,
            standard_indexed, typemap, copy_calltypes)
        if self.neighborhood is None:
            self.neighborhood = kernel_size

        if config.DEBUG_ARRAY_OPT >= 1:
            print("After add_indices_to_kernel")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # The return in the stencil kernel becomes a setitem for that
        # particular point in the iteration space.
        ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks,
                                                      index_vars, out_name)

        if config.DEBUG_ARRAY_OPT >= 1:
            print("After replace_return_with_setitem", ret_blocks)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Start to form the new function to execute the stencil kernel.
        func_text = "def {}({}{}):\n".format(stencil_func_name,
                                             ",".join(kernel_copy.arg_names),
                                             sig_extra)

        # Get loop ranges for each dimension, which could be either int
        # or variable. In the latter case we'll use the extra neighborhood
        # argument to the function.
        ranges = []
        for i in range(the_array.ndim):
            if isinstance(kernel_size[i][0], int):
                lo = kernel_size[i][0]
                hi = kernel_size[i][1]
            else:
                lo = "{}[{}][0]".format(neighborhood_name, i)
                hi = "{}[{}][1]".format(neighborhood_name, i)
            ranges.append((lo, hi))

        # If there are more than one relatively indexed arrays, add a call to
        # a function that will raise an error if any of the relatively indexed
        # arrays are of different size than the first input array.
        if len(relatively_indexed) > 1:
            func_text += "    raise_if_incompatible_array_sizes(" + first_arg
            for other_array in relatively_indexed:
                if other_array != first_arg:
                    func_text += "," + other_array
            func_text += ")\n"

        # Get the shape of the first input array.
        shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table)
        func_text += "    {} = {}.shape\n".format(shape_name, first_arg)

        # If we have to allocate the output array (the out argument was not used)
        # then us numpy.full if the user specified a cval stencil decorator option
        # or np.zeros if they didn't to allocate the array.
        if result is None:
            return_type_name = numpy_support.as_dtype(
                return_type.dtype).type.__name__
            if "cval" in self.options:
                cval = self.options["cval"]
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")
                out_init = "{} = np.full({}, {}, dtype=np.{})\n".format(
                    out_name, shape_name, cval, return_type_name)
            else:
                out_init = "{} = np.zeros({}, dtype=np.{})\n".format(
                    out_name, shape_name, return_type_name)
            func_text += "    " + out_init
        else:  # result is present, if cval is set then use it
            if "cval" in self.options:
                cval = self.options["cval"]
                cval_ty = typing.typeof.typeof(cval)
                if not self._typingctx.can_convert(cval_ty, return_type.dtype):
                    msg = "cval type does not match stencil return type."
                    raise ValueError(msg)
                out_init = "{}[:] = {}\n".format(out_name, cval)
                func_text += "    " + out_init

        offset = 1
        # Add the loop nests to the new function.
        for i in range(the_array.ndim):
            for j in range(offset):
                func_text += "    "
            # ranges[i][0] is the minimum index used in the i'th dimension
            # but minimum's greater than 0 don't preclude any entry in the array.
            # So, take the minimum of 0 and the minimum index found in the kernel
            # and this will be a negative number (potentially -0).  Then, we do
            # unary - on that to get the positive offset in this dimension whose
            # use is precluded.
            # ranges[i][1] is the maximum of 0 and the observed maximum index
            # in this dimension because negative maximums would not cause us to
            # preclude any entry in the array from being used.
            func_text += ("for {} in range(-min(0,{}),"
                          "{}[{}]-max(0,{})):\n").format(
                              index_vars[i], ranges[i][0], shape_name, i,
                              ranges[i][1])
            offset += 1

        for j in range(offset):
            func_text += "    "
        # Put a sentinel in the code so we can locate it in the IR.  We will
        # remove this sentinel assignment and replace it with the IR for the
        # stencil kernel body.
        func_text += "{} = 0\n".format(sentinel_name)
        func_text += "    return {}\n".format(out_name)

        if config.DEBUG_ARRAY_OPT >= 1:
            print("new stencil func text")
            print(func_text)

        # Force the new stencil function into existence.
        exec(func_text) in globals(), locals()
        stencil_func = eval(stencil_func_name)
        if sigret is not None:
            pysig = utils.pysignature(stencil_func)
            sigret.pysig = pysig
        # Get the IR for the newly created stencil function.
        from numba.core import compiler
        stencil_ir = compiler.run_frontend(stencil_func)
        ir_utils.remove_dels(stencil_ir.blocks)

        # rename all variables in stencil_ir afresh
        var_table = ir_utils.get_name_var_table(stencil_ir.blocks)
        new_var_dict = {}
        reserved_names = (
            [sentinel_name, out_name, neighborhood_name, shape_name] +
            kernel_copy.arg_names + index_vars)
        for name, var in var_table.items():
            if not name in reserved_names:
                new_var_dict[name] = ir_utils.mk_unique_var(name)
        ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict)

        stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1

        # Shift labels in the kernel copy so they are guaranteed unique
        # and don't conflict with any labels in the stencil_ir.
        kernel_copy.blocks = ir_utils.add_offset_to_labels(
            kernel_copy.blocks, stencil_stub_last_label)
        new_label = max(kernel_copy.blocks.keys()) + 1
        # Adjust ret_blocks to account for addition of the offset.
        ret_blocks = [x + stencil_stub_last_label for x in ret_blocks]

        if config.DEBUG_ARRAY_OPT >= 1:
            print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label)
            print("before replace sentinel stencil_ir")
            ir_utils.dump_blocks(stencil_ir.blocks)
            print("before replace sentinel kernel_copy")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Search all the block in the stencil outline for the sentinel.
        for label, block in stencil_ir.blocks.items():
            for i, inst in enumerate(block.body):
                if (isinstance(inst, ir.Assign)
                        and inst.target.name == sentinel_name):
                    # We found the sentinel assignment.
                    loc = inst.loc
                    scope = block.scope
                    # split block across __sentinel__
                    # A new block is allocated for the statements prior to the
                    # sentinel but the new block maintains the current block
                    # label.
                    prev_block = ir.Block(scope, loc)
                    prev_block.body = block.body[:i]
                    # The current block is used for statements after sentinel.
                    block.body = block.body[i + 1:]
                    # But the current block gets a new label.
                    body_first_label = min(kernel_copy.blocks.keys())

                    # The previous block jumps to the minimum labelled block of
                    # the parfor body.
                    prev_block.append(ir.Jump(body_first_label, loc))
                    # Add all the parfor loop body blocks to the gufunc
                    # function's IR.
                    for (l, b) in kernel_copy.blocks.items():
                        stencil_ir.blocks[l] = b

                    stencil_ir.blocks[new_label] = block
                    stencil_ir.blocks[label] = prev_block
                    # Add a jump from all the blocks that previously contained
                    # a return in the stencil kernel to the block
                    # containing statements after the sentinel.
                    for ret_block in ret_blocks:
                        stencil_ir.blocks[ret_block].append(
                            ir.Jump(new_label, loc))
                    break
            else:
                continue
            break

        stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks)
        ir_utils.remove_dels(stencil_ir.blocks)

        assert (isinstance(the_array, types.Type))
        array_types = args

        new_stencil_param_types = list(array_types)

        if config.DEBUG_ARRAY_OPT >= 1:
            print("new_stencil_param_types", new_stencil_param_types)
            ir_utils.dump_blocks(stencil_ir.blocks)

        # Compile the combined stencil function with the replaced loop
        # body in it.
        new_func = compiler.compile_ir(self._typingctx, self._targetctx,
                                       stencil_ir, new_stencil_param_types,
                                       None, compiler.DEFAULT_FLAGS, {})
        return new_func
Exemple #6
0
def _fix_multi_exit_blocks(func_ir, exit_nodes, *, split_condition=None):
    """Modify the FunctionIR to create a single common exit node given the
    original exit nodes.

    Parameters
    ----------
    func_ir :
        The FunctionIR. Mutated inplace.
    exit_nodes :
        The original exit nodes. A sequence of block keys.
    split_condition : callable or None
        If not None, it is a callable with the signature
        `split_condition(statement)` that determines if the `statement` is the
        splitting point (e.g. `POP_BLOCK`) in an exit node.
        If it's None, the exit node is not split.
    """

    # Convert the following:
    #
    #     |           |
    # +-------+   +-------+
    # | exit0 |   | exit1 |
    # +-------+   +-------+
    #     |           |
    # +-------+   +-------+
    # | after0|   | after1|
    # +-------+   +-------+
    #     |           |
    #
    # To roughly:
    #
    #     |           |
    # +-------+   +-------+
    # | exit0 |   | exit1 |
    # +-------+   +-------+
    #     |           |
    #     +-----+-----+
    #           |
    #      +---------+
    #      | common  |
    #      +---------+
    #           |
    #       +-------+
    #       | post  |
    #       +-------+
    #           |
    #     +-----+-----+
    #     |           |
    # +-------+   +-------+
    # | after0|   | after1|
    # +-------+   +-------+

    blocks = func_ir.blocks
    # Getting the scope
    any_blk = min(func_ir.blocks.values())
    scope = any_blk.scope
    # Getting the maximum block label
    max_label = max(func_ir.blocks) + 1
    # Define the new common block for the new exit.
    common_block = ir.Block(any_blk.scope, loc=ir.unknown_loc)
    common_label = max_label
    max_label += 1
    blocks[common_label] = common_block
    # Define the new block after the exit.
    post_block = ir.Block(any_blk.scope, loc=ir.unknown_loc)
    post_label = max_label
    max_label += 1
    blocks[post_label] = post_block

    # Adjust each exit node
    remainings = []
    for i, k in enumerate(exit_nodes):
        blk = blocks[k]

        # split the block if needed
        if split_condition is not None:
            for pt, stmt in enumerate(blk.body):
                if split_condition(stmt):
                    break
        else:
            # no splitting
            pt = -1

        before = blk.body[:pt]
        after = blk.body[pt:]
        remainings.append(after)

        # Add control-point variable to mark which exit block this is.
        blk.body = before
        loc = blk.loc
        blk.body.append(
            ir.Assign(value=ir.Const(i, loc=loc),
                      target=scope.get_or_define("$cp", loc=loc),
                      loc=loc))
        # Replace terminator with a jump to the common block
        assert not blk.is_terminated
        blk.body.append(ir.Jump(common_label, loc=ir.unknown_loc))

    if split_condition is not None:
        # Move the splitting statement to the common block
        common_block.body.append(remainings[0][0])
    assert not common_block.is_terminated
    # Append jump from common block to post block
    common_block.body.append(ir.Jump(post_label, loc=loc))

    # Make if-else tree to jump to target
    remain_blocks = []
    for remain in remainings:
        remain_blocks.append(max_label)
        max_label += 1

    switch_block = post_block
    loc = ir.unknown_loc
    for i, remain in enumerate(remainings):
        match_expr = scope.redefine("$cp_check", loc=loc)
        match_rhs = scope.redefine("$cp_rhs", loc=loc)

        # Do comparison to match control-point variable to the exit block
        switch_block.body.append(
            ir.Assign(value=ir.Const(i, loc=loc), target=match_rhs, loc=loc), )

        # Add assignment for the comparison
        switch_block.body.append(
            ir.Assign(value=ir.Expr.binop(
                fn=operator.eq,
                lhs=scope.get("$cp"),
                rhs=match_rhs,
                loc=loc,
            ),
                      target=match_expr,
                      loc=loc), )

        # Insert jump to the next case
        [jump_target] = remain[-1].get_targets()
        switch_block.body.append(
            ir.Branch(match_expr, jump_target, remain_blocks[i], loc=loc), )
        switch_block = ir.Block(scope=scope, loc=loc)
        blocks[remain_blocks[i]] = switch_block

    # Add the final jump
    switch_block.body.append(ir.Jump(jump_target, loc=loc))

    return func_ir, common_label
Exemple #7
0
def _rewrite_return(func_ir, target_block_label):
    """Rewrite a return block inside a with statement.

    Arguments
    ---------

    func_ir: Function IR
      the CFG to transform
    target_block_label: int
      the block index/label of the block containing the POP_BLOCK statement


    This implements a CFG transformation to insert a block between two other
    blocks.

    The input situation is:

    ┌───────────────┐
    │   top         │
    │   POP_BLOCK   │
    │   bottom      │
    └───────┬───────┘
            │
    ┌───────▼───────┐
    │               │
    │    RETURN     │
    │               │
    └───────────────┘

    If such a pattern is detected in IR, it means there is a `return` statement
    within a `with` context. The basic idea is to rewrite the CFG as follows:

    ┌───────────────┐
    │   top         │
    │   POP_BLOCK   │
    │               │
    └───────┬───────┘
            │
    ┌───────▼───────┐
    │               │
    │     bottom    │
    │               │
    └───────┬───────┘
            │
    ┌───────▼───────┐
    │               │
    │    RETURN     │
    │               │
    └───────────────┘

    We split the block that contains the `POP_BLOCK` statement into two blocks.
    Everything from the beginning of the block up to and including the
    `POP_BLOCK` statement is considered the 'top' and everything below is
    considered 'bottom'. Finally the jump statements are re-wired to make sure
    the CFG remains valid.

    """
    # the block itself from the index
    target_block = func_ir.blocks[target_block_label]
    # get the index of the block containing the return
    target_block_successor_label = target_block.terminator.get_targets()[0]
    # the return block
    target_block_successor = func_ir.blocks[target_block_successor_label]

    # create the new return block with an appropriate label
    max_label = ir_utils.find_max_label(func_ir.blocks)
    new_label = max_label + 1
    # create the new return block
    new_block_loc = target_block_successor.loc
    new_block_scope = ir.Scope(None, loc=new_block_loc)
    new_block = ir.Block(new_block_scope, loc=new_block_loc)

    # Split the block containing the POP_BLOCK into top and bottom
    # Block must be of the form:
    # -----------------
    # <some stmts>
    # POP_BLOCK
    # <some more stmts>
    # JUMP
    # -----------------
    top_body, bottom_body = [], []
    pop_blocks = [*target_block.find_insts(ir.PopBlock)]
    assert len(pop_blocks) == 1
    assert len([*target_block.find_insts(ir.Jump)]) == 1
    assert isinstance(target_block.body[-1], ir.Jump)
    pb_marker = pop_blocks[0]
    pb_is = target_block.body.index(pb_marker)
    top_body.extend(target_block.body[:pb_is])
    top_body.append(ir.Jump(target_block_successor_label, target_block.loc))
    bottom_body.extend(target_block.body[pb_is:-1])
    bottom_body.append(ir.Jump(new_label, target_block.loc))

    # get the contents of the return block
    return_body = func_ir.blocks[target_block_successor_label].body
    # finally, re-assign all blocks
    new_block.body.extend(return_body)
    target_block_successor.body.clear()
    target_block_successor.body.extend(bottom_body)
    target_block.body.clear()
    target_block.body.extend(top_body)

    # finally, append the new return block and rebuild the IR properties
    func_ir.blocks[new_label] = new_block
    func_ir._definitions = ir_utils.build_definitions(func_ir.blocks)
    return func_ir