def test_der_abs(): x = np.linspace(-0.98, 0.98, 5) h = 1e-8 der1 = abs(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, np.where(x < 0, -1, 1)) der2 = abs(bicomplex(x + h * 1j, h)).imag12 / h**2 np.testing.assert_allclose(der2, 0, atol=1e-6)
def test_division(): z1 = bicomplex(1, 2) z2 = bicomplex(3, 4) z3 = z1 / z2 z4 = z1 * (z2**-1) np.testing.assert_allclose(z3.z1, z4.z1) np.testing.assert_allclose(z3.z2, z4.z2)
def test_der_log(): x = np.linspace(0.001, 5, 6) h = 1e-15 der1 = np.log(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, 1. / x) der2 = np.log(bicomplex(x + h * 1j, h)).imag12 / h**2 np.testing.assert_allclose(der2, -1. / x**2)
def test_der_log(): x = np.linspace(0.001, 5, 6) h = 1e-15 der1 = np.log(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, 1./x) der2 = np.log(bicomplex(x + h * 1j, h)).imag12 / h**2 np.testing.assert_allclose(der2, -1./x**2)
def test_dot(): z1 = bicomplex(1, 2) z2 = bicomplex(3, 4) z3 = z1.dot(z2) z4 = z1 * z2 np.testing.assert_array_equal(z3.z1, z4.z1) np.testing.assert_array_equal(z3.z2, z4.z2)
def test_der_arctan(): x = np.linspace(0, 2, 5) h = 1e-8 der1 = np.arctan(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, 1. / (1 + x**2)) der2 = bicomplex(x + h * 1j, h).arctan().imag12 / h**2 np.testing.assert_allclose(der2, -2 * x / (1 + x**2)**2)
def test_sub(): shape = (3, 3) z0 = bicomplex(np.ones(shape), 2 * np.ones(shape)) z1 = bicomplex(3 * np.ones(shape), 4 * np.ones(shape)) z2 = z0 - z1 np.testing.assert_array_equal(z2.z1, z0.z1 - z1.z1) np.testing.assert_array_equal(z2.z2, z0.z2 - z1.z2)
def test_der_cos(): x = np.linspace(-0.99, 0.99, 5) h = 1e-9 der1 = np.cos(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, -np.sin(x)) h *= 100 der2 = np.cos(bicomplex(x + h * 1j, h)).imag12 / h**2 np.testing.assert_allclose(der2, -np.cos(x))
def test_der_cos(): x = np.linspace(-0.99, 0.99, 5) h = 1e-9 der1 = np.cos(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, - np.sin(x)) h *= 100 der2 = np.cos(bicomplex(x + h * 1j, h)).imag12 / h**2 np.testing.assert_allclose(der2, -np.cos(x))
def test_shape(self): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) self.assertEqual(z.shape, shape) z = bicomplex(1, 2) self.assertEqual(z.shape, ())
def test_der_arctan(): x = np.linspace(0, 2, 5) h = 1e-8 der1 = np.arctan(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, 1. / (1 + x**2)) der2 = bicomplex(x+h*1j, h).arctan().imag12/h**2 np.testing.assert_allclose(der2, -2*x/(1+x**2)**2)
def test_norm(self): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) np.testing.assert_array_equal(z.norm(), np.sqrt(5*t**2)) z = bicomplex(1, 2) self.assertEqual(z.norm(), np.sqrt(5))
def test_arg_c(): z1 = bicomplex(np.linspace(0, np.pi, 5), 0) z2 = z1.arg_c() np.testing.assert_array_equal(z2, np.arctan2(z1.z2.real, z1.z1.real)) z3 = bicomplex(0.1, np.linspace(0, np.pi, 5)) z4 = z3.arg_c() np.testing.assert_allclose(z4.real, np.arctan2(z3.z2.real, z3.z1.real))
def test_norm(self): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) np.testing.assert_array_equal(z.norm(), np.sqrt(5 * t**2)) z = bicomplex(1, 2) self.assertEqual(z.norm(), np.sqrt(5))
def test_gt(): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) z2 = bicomplex(1, 2) val = z > z2 truth = np.array([[False, False, True], [ True, True, True], [ True, True, True]], dtype=bool) np.testing.assert_array_equal(val, truth)
def test_der_arccosh(): x = np.linspace(1.2, 5, 5) h = 1e-8 der1 = np.arccosh(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, 1. / np.sqrt(x**2 - 1)) h = (_default_base_step(x, scale=2.5) + 1) - 1 der2 = np.arccosh(bicomplex(x + h * 1j, h)).imag12 / h**2 true_der2 = -x / (x**2-1)**(3. / 2) np.testing.assert_allclose(der2, true_der2, atol=1e-5)
def test_der_arccosh(): x = np.linspace(1.2, 5, 5) h = 1e-8 der1 = np.arccosh(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, 1. / np.sqrt(x**2 - 1)) h = (_default_base_step(x, scale=2.5) + 1) - 1 der2 = np.arccosh(bicomplex(x + h * 1j, h)).imag12 / h**2 true_der2 = -x / (x**2 - 1)**(3. / 2) np.testing.assert_allclose(der2, true_der2, atol=1e-5)
def test_eq(): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) z2 = bicomplex(1, 2) val = z == z2 truth = np.array([[False, True, False], [False, False, False], [False, False, False]], dtype=bool) np.testing.assert_array_equal(val, truth)
def test_der_arccos(self): x = np.linspace(-0.98, 0.98, 5) h = 1e-8 der1 = np.arccos(bicomplex(x + h * 1j, 0)).imag1 / h np.testing.assert_allclose(der1, -1. / np.sqrt(1 - x**2)) h = (_default_base_step(x, scale=2.5) + 1) - 1 der2 = np.arccos(bicomplex(x + h * 1j, h)).imag12 / h**2 true_der2 = -x / (1 - x**2)**(3. / 2) np.testing.assert_allclose(der2, true_der2, atol=1e-5)
def test_add(): shape = (3, 3) z0 = bicomplex(np.ones(shape), 2 * np.ones(shape)) z1 = bicomplex(3 * np.ones(shape), 4 * np.ones(shape)) z2 = z0 + z1 np.testing.assert_array_equal(z2.z1, z0.z1 + z1.z1) np.testing.assert_array_equal(z2.z2, z0.z2 + z1.z2) z3 = z0 + 1 np.testing.assert_array_equal(z3.z1, z0.z1 + 1) np.testing.assert_array_equal(z3.z2, z0.z2)
def _test_first_derivative(name): x = np.linspace(0.0001, 0.98, 5) h = _default_base_step(x, scale=2) f, df = get_function(name, n=1) der = f(bicomplex(x + h * 1j, 0)).imag1 / h der_true = df(x) np.testing.assert_allclose(der, der_true, err_msg=('{0!s}'.format(name)))
def test_pow(): z1 = bicomplex(1, 2) z2 = z1 ** 2 z3 = z1 * z1 np.testing.assert_allclose(z2.z1, z1.z1 * z1.z1 - z1.z2 * z1.z2) np.testing.assert_allclose(z2.z2, z1.z1 * z1.z2 + z1.z2 * z1.z1) np.testing.assert_allclose(z3.z1, z1.z1 * z1.z1 - z1.z2 * z1.z2) np.testing.assert_allclose(z3.z2, z1.z1 * z1.z2 + z1.z2 * z1.z1) z1 = bicomplex(z1=(-1j), z2=(-1-0j)) z2 = z1 * z1 z3 = z1 ** 2 np.testing.assert_allclose(z2.z1, z1.z1 * z1.z1 - z1.z2 * z1.z2) np.testing.assert_allclose(z2.z2, z1.z1 * z1.z2 + z1.z2 * z1.z1) np.testing.assert_allclose(z3.z1, z1.z1 * z1.z1 - z1.z2 * z1.z2) np.testing.assert_allclose(z3.z2, z1.z1 * z1.z2 + z1.z2 * z1.z1)
def test_pow(): z1 = bicomplex(1, 2) z2 = z1**2 z3 = z1 * z1 np.testing.assert_allclose(z2.z1, z1.z1 * z1.z1 - z1.z2 * z1.z2) np.testing.assert_allclose(z2.z2, z1.z1 * z1.z2 + z1.z2 * z1.z1) np.testing.assert_allclose(z3.z1, z1.z1 * z1.z1 - z1.z2 * z1.z2) np.testing.assert_allclose(z3.z2, z1.z1 * z1.z2 + z1.z2 * z1.z1) z1 = bicomplex(z1=(-1j), z2=(-1 - 0j)) z2 = z1 * z1 z3 = z1**2 np.testing.assert_allclose(z2.z1, z1.z1 * z1.z1 - z1.z2 * z1.z2) np.testing.assert_allclose(z2.z2, z1.z1 * z1.z2 + z1.z2 * z1.z1) np.testing.assert_allclose(z3.z1, z1.z1 * z1.z1 - z1.z2 * z1.z2) np.testing.assert_allclose(z3.z2, z1.z1 * z1.z2 + z1.z2 * z1.z1)
def _test_second_derivative(name): x = np.linspace(0.01, 0.98, 5) h = _default_base_step(x, scale=2.5) # h = 1e-8 f, df = get_function(name, n=2) der = f(bicomplex(x + h * 1j, h)).imag12 / h**2 der_true = df(x) np.testing.assert_allclose(der, der_true, err_msg=('{0!s}'.format(name)))
def test_assign(): shape = (3, 3) z = bicomplex(np.ones(shape), 2 * np.ones(shape)) z0 = z[0] np.testing.assert_array_equal(z0.z1, z.z1[0]) np.testing.assert_array_equal(z0.z2, z.z2[0]) z1 = z[:] np.testing.assert_array_equal(z1.z1, z.z1[:]) np.testing.assert_array_equal(z1.z2, z.z2[:])
def _multicomplex2(f, fx, x, h, *args, **kwargs): """Calculate Hessian with bicomplex-step derivative approximation""" n = len(x) ee = np.diag(h) hess = np.outer(h, h) for i in range(n): for j in range(i, n): zph = bicomplex(x + 1j * ee[i, :], ee[j, :]) hess[i, j] = (f(zph, *args, **kwargs)).imag12 / hess[j, i] hess[j, i] = hess[i, j] return hess
def test_subsref(self): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) z0 = z[0] np.testing.assert_array_equal(z0.z1, z.z1[0]) np.testing.assert_array_equal(z0.z2, z.z2[0]) z1 = z[:] np.testing.assert_array_equal(z1.z1, z.z1[:]) np.testing.assert_array_equal(z1.z2, z.z2[:]) z1 = z[1:3, 1:3] np.testing.assert_array_equal(z1.z1, z.z1[1:3, 1:3]) np.testing.assert_array_equal(z1.z2, z.z2[1:3, 1:3])
def test_subsref(): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) z0 = z[0] np.testing.assert_array_equal(z0.z1, z.z1[0]) np.testing.assert_array_equal(z0.z2, z.z2[0]) z1 = z[:] np.testing.assert_array_equal(z1.z1, z.z1[:]) np.testing.assert_array_equal(z1.z2, z.z2[:]) z1 = z[1:3, 1:3] np.testing.assert_array_equal(z1.z1, z.z1[1:3, 1:3]) np.testing.assert_array_equal(z1.z2, z.z2[1:3, 1:3])
def test_cos(): z1 = bicomplex(np.linspace(0, np.pi, 5), 0) z2 = z1.cos() # np.cos(z1) np.testing.assert_array_equal(z2.z1, np.cos(z1.z1))
def test_rpow(): z2 = bicomplex(3, 4) z3 = 2.**z2 z4 = np.exp(z2 * np.log(2)) np.testing.assert_allclose(z3.z1, z4.z1) np.testing.assert_allclose(z3.z2, z4.z2)
def test_flat(self): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) t = z.flat(1) self.assertTrue(t==bicomplex(1, 2))
def test_multiplication(): z1 = bicomplex(1, 2) z2 = bicomplex(3, 4) z3 = z1 * z2 np.testing.assert_array_equal(z3.z1, z1.z1 * z2.z1 - z1.z2 * z2.z2) np.testing.assert_array_equal(z3.z2, z1.z1 * z2.z2 + z1.z2 * z2.z1)
def test_arccos(): z1 = bicomplex(np.linspace(-0.98, 0.98, 5), 0) z2 = z1.arccos() np.testing.assert_allclose(z2.real, np.arccos(z1.z1).real, atol=1e-15) np.testing.assert_allclose(z2.imag1, np.arccos(z1.z1).imag, atol=1e-15)
def test_conjugate(self): z = bicomplex(1, 2) z2 = bicomplex(1, -2) self.assertTrue(z.conjugate()==z2)
def test_rsub(): z1 = bicomplex(2, 1) a = 1 + 1j z2 = a - z1 np.testing.assert_array_equal(z2.z1, a - z1.z1) np.testing.assert_array_equal(z2.z2, -z1.z2)
def test_init(self): z = bicomplex(1, 2) self.assertEqual(z.z1, 1) self.assertEqual(z.z2, 2)
def test_neg(self): z = bicomplex(1, 2) z2 = -z self.assertEqual(z2.z1, -z.z1) self.assertEqual(z2.z2, -z.z2)
def test_flat(self): shape = (3, 3) t = np.arange(9).reshape(shape) z = bicomplex(t, 2 * t) t = z.flat(1) self.assertTrue(t == bicomplex(1, 2))
def test_conjugate(self): z = bicomplex(1, 2) z2 = bicomplex(1, -2) self.assertTrue(z.conjugate() == z2)
def test_rpow(): z2 = bicomplex(3, 4) z3 = 2. ** z2 z4 = np.exp(z2*np.log(2)) np.testing.assert_allclose(z3.z1, z4.z1) np.testing.assert_allclose(z3.z2, z4.z2)
def test_repr(self): z = bicomplex(1, 2) txt = repr(z) self.assertEqual(txt, "bicomplex(z1=(1+0j), z2=(2+0j))")