def test_multiple_runs(): "test running multiple models through multiple tournaments" d = testing.play_data() models = [nx.logistic(), nx.fifty()] with testing.HiddenPrints(): p = nx.production(models, d, 'bernie') ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.backtest(models, d, 2) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.run(models, nx.ValidationSplitter(d), 'ken') ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.production(models, d) ok_(p.shape[1] == 10, 'wrong number of tournaments') p = nx.backtest(models, d) ok_(p.shape[1] == 10, 'wrong number of tournaments') p = nx.run(models, nx.ValidationSplitter(d)) ok_(p.shape[1] == 10, 'wrong number of tournaments') p = nx.production(models, d, [1, 5]) ok_(p.shape[1] == 4, 'wrong number of tournaments') ok_(p.tournaments() == ['bernie', 'charles'], 'wrong tournaments') p = nx.backtest(models, d, ['charles', 'bernie']) ok_(p.shape[1] == 4, 'wrong number of tournaments') ok_(p.tournaments() == ['bernie', 'charles'], 'wrong tournaments') p = nx.run(models, nx.ValidationSplitter(d), ['ken']) ok_(p.shape[1] == 2, 'wrong number of tournaments') ok_(p.tournaments() == ['ken'], 'wrong tournaments')
def test_multiple_runs(): """test running multiple models through multiple tournaments""" d = testing.play_data() models = [nx.linear(), nx.fifty()] with testing.HiddenPrints(): p = nx.production(models, d, 'kazutsugi') ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.backtest(models, d, 8) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.run(models, nx.ValidationSplitter(d), 'kazutsugi') ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.production(models, d) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.backtest(models, d) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.run(models, nx.ValidationSplitter(d)) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.production(models, d, [8]) ok_(p.shape[1] == 2, 'wrong number of tournaments') ok_(p.tournaments() == ['kazutsugi'], 'wrong tournaments') p = nx.backtest(models, d, ['kazutsugi']) ok_(p.shape[1] == 2, 'wrong number of tournaments') ok_(p.tournaments() == ['kazutsugi'], 'wrong tournaments') p = nx.run(models, nx.ValidationSplitter(d), ['kazutsugi']) ok_(p.shape[1] == 2, 'wrong number of tournaments') ok_(p.tournaments() == ['kazutsugi'], 'wrong tournaments')
def test_run(): "Make sure run runs" d = testing.play_data() models = [nx.linear(), nx.fifty()] splitters = [nx.TournamentSplitter(d), nx.ValidationSplitter(d), nx.CheatSplitter(d), nx.CVSplitter(d, kfold=2), nx.SplitSplitter(d, fit_fraction=0.5)] for model in models: for splitter in splitters: p = nx.run(model, splitter, tournament=None, verbosity=0) ok_(p.shape[1] == 1, 'wrong number of tournaments') ok_(p.tournaments() == nx.tournament_all(), 'wrong tournaments') assert_raises(ValueError, nx.run, None, nx.TournamentSplitter(d)) assert_raises(ValueError, nx.run, nx.fifty(), nx.TournamentSplitter(d), {})
def get_models(): models = [ nx.logistic(), nx.ridge_mean(), nx.extratrees(), nx.randomforest(), nx.mlpc(), nx.logisticPCA(), nx.example_predictions(), nx.fifty() ] return models
def test_backtest_production(): "Make sure backtest and production run" d = testing.micro_data() model = nx.fifty() with testing.HiddenPrints(): p = nx.production(model, d) ok_(p.shape[1] == 5, 'wrong number of tournaments') ok_(p.tournaments() == nx.tournament_all(), 'wrong tournaments') p = nx.backtest(model, d, kfold=2) ok_(p.shape[1] == 5, 'wrong number of tournaments') ok_(p.tournaments() == nx.tournament_all(), 'wrong tournaments') for verbosity in (0, 1, 2, 3): nx.backtest(model, d, tournament=3, kfold=2, verbosity=verbosity) nx.production(model, d, tournament='ken', verbosity=verbosity) nx.production(model, d, tournament=4, verbosity=verbosity) nx.production(model, d, tournament=None, verbosity=verbosity) if verbosity == 3: nx.production(model, d, tournament=5, verbosity=verbosity) nx.production(model, d, tournament='charles', verbosity=verbosity)
def test_run_unique(): "name and tournament lists must be unique" d = testing.micro_data() assert_raises(ValueError, nx.production, [nx.fifty(), nx.fifty()], d) assert_raises(ValueError, nx.production, nx.fifty(), d, [1, 'bernie'])