def hfft(a, n=None, axis=-1): """ Compute the fft of a signal which spectrum has Hermitian symmetry. Parameters ---------- a : array input array n : int length of the hfft axis : int axis over which to compute the hfft See also -------- rfft ihfft Notes ----- These are a pair analogous to rfft/irfft, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's hermite_fft for which you must supply the length of the result if it is to be odd. ihfft(hfft(a), len(a)) == a within numerical accuracy. """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return irfft(conjugate(a), n, axis) * n
def ihfft(a, n=None, axis=-1): """ Compute the inverse fft of a signal whose spectrum has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the ihfft. axis : int, optional Axis over which to compute the ihfft. See also -------- rfft, hfft Notes ----- These are a pair analogous to rfft/irfft, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's hermite_fft for which you must supply the length of the result if it is to be odd. ihfft(hfft(a), len(a)) == a within numerical accuracy. """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis)) / n
def ihfft(a, n=None, axis=-1): """ Compute the inverse fft of a signal whose spectrum has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the ihfft. axis : int, optional Axis over which to compute the ihfft. See also -------- rfft, hfft Notes ----- These are a pair analogous to rfft/irfft, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's hermite_fft for which you must supply the length of the result if it is to be odd. ihfft(hfft(a), len(a)) == a within numerical accuracy. """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis))/n
def ihfft(a, n=None, axis=-1, norm=None): """ Compute the inverse FFT of a signal that has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT, the number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional Normalization mode (see `numpy.fft`). Default is None. .. versionadded:: 1.10.0 Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is ``n//2 + 1``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error, * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=float) if n is None: n = a.shape[axis] unitary = _unitary(norm) output = conjugate(rfft(a, n, axis)) return output * (1 / (sqrt(n) if unitary else n))
def ihfft(a, n=None, axis=-1): """ Compute the inverse FFT of a signal which has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis)) / n
def ihfft(a, n=None, axis=-1): """ Compute the inverse FFT of a signal which has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis))/n
def hfft(a, n=None, axis=-1): """ Compute the FFT of a signal whose spectrum has Hermitian symmetry. Parameters ---------- a : array_like The input array. n : int, optional The length of the FFT. axis : int, optional The axis over which to compute the FFT, assuming Hermitian symmetry of the spectrum. Default is the last axis. Returns ------- out : ndarray The transformed input. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return irfft(conjugate(a), n, axis) * n
def ihfft(a, n=None, axis=-1): """hfft(a, n=None, axis=-1) ihfft(a, n=None, axis=-1) These are a pair analogous to rfft/irfft, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's hfft for which you must supply the length of the result if it is to be odd. ihfft(hfft(a), len(a)) == a within numerical accuracy.""" a = asarray(a).astype(float) if n == None: n = shape(a)[axis] return conjugate(rfft(a, n, axis))/n
def ihfft(a, n=None, axis=-1): """hfft(a, n=None, axis=-1) ihfft(a, n=None, axis=-1) These are a pair analogous to rfft/irfft, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's hfft for which you must supply the length of the result if it is to be odd. ihfft(hfft(a), len(a)) == a within numerical accuracy.""" a = asarray(a).astype(float) if n == None: n = shape(a)[axis] return conjugate(rfft(a, n, axis)) / n
def ihfft(a, n=None, axis=-1): """ Compute the inverse FFT of a signal whose spectrum has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. axis : int, optional Axis over which to compute the inverse FFT, assuming Hermitian symmetry of the spectrum. Default is the last axis. Returns ------- out : ndarray The transformed input. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis))/n
def ihfft(a, n=None, axis=-1): """ Compute the inverse FFT of a signal whose spectrum has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. axis : int, optional Axis over which to compute the inverse FFT, assuming Hermitian symmetry of the spectrum. Default is the last axis. Returns ------- out : ndarray The transformed input. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis)) / n
def hfft(a, n=None, axis=-1, norm=None): """ Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2 + 1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional Normalization mode (see `numpy.fft`). Default is None. .. versionadded:: 1.10.0 Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*m - 2`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified, for instance as ``2*m - 1`` in the typical case, Raises ------ IndexError If `axis` is larger than the last axis of `a`. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd. * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error, * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error. Examples -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) >>> np.fft.hfft(signal[:4]) # Input first half of signal array([ 15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([ 15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ # The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) if n is None: n = (a.shape[axis] - 1) * 2 unitary = _unitary(norm) return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n)
def hfft(a, n=None, axis=-1, norm=None): """ Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2 + 1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is taken to be ``2*(m-1)`` where ``m`` is the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional Normalization mode (see `numpy.fft`). Default is None. .. versionadded:: 1.10.0 Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*m - 2`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified, for instance as ``2*m - 1`` in the typical case, Raises ------ IndexError If `axis` is larger than the last axis of `a`. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd. * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error, * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error. The correct interpretation of the hermitian input depends on the length of the original data, as given by `n`. This is because each input shape could correspond to either an odd or even length signal. By default, `hfft` assumes an even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart. By Hermitian symmetry, the value is thus treated as purely real. To avoid losing information, the shape of the full signal **must** be given. Examples -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary >>> np.fft.hfft(signal[:4]) # Input first half of signal array([15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, -0.+0.j], # may vary [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ a = asarray(a) if n is None: n = (a.shape[axis] - 1) * 2 unitary = _unitary(norm) return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n)
def hfft(a, n=None, axis=-1): """ Compute the FFT of a signal which has Hermitian symmetry (real spectrum). Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) >>> np.fft.hfft(signal[:4]) # Input first half of signal array([ 15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([ 15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return irfft(conjugate(a), n, axis) * n