def backPropagate_(self): '''Back-Propagate errors (and node responsibilities).''' errors3 = multiply(-(self.xs__ - self.a3__), 1 - power(self.a3__, 2)) d3 = multiply(errors3, self.xs__) errors2 = multiply(d3 * self.weights2_, 1 - power(self.a2__, 2)) d2 = multiply(errors2, self.a2__) # average the errors d3 = np.sum(d3,0) / d3.shape[0] d2 = np.sum(d2,0) / d2.shape[0] self.d3__ = d3.T self.d2__ = d2.T
def SPIRIT(A, lamb, energy, k0=1, holdOffTime=0, reorthog=False, evalMetrics="F"): A = np.mat(A) n = A.shape[1] totalTime = A.shape[0] Proj = npm.ones((totalTime, n)) * np.nan recon = npm.zeros((totalTime, n)) # initialize w_i to unit vectors W = npm.eye(n) d = 0.01 * npm.ones((n, 1)) m = k0 # number of eigencomponents relErrors = npm.zeros((totalTime, 1)) sumYSq = 0.0 E_t = [] sumXSq = 0.0 E_dash_t = [] res = {} k_hist = [] W_hist = [] anomalies = [] # incremental update W lastChangeAt = 0 for t in range(totalTime): k_hist.append(m) # update W for each y_t x = A[t, :].T # new data as column vector for j in range(m): W[:, j], d[j], x = updateW(x, W[:, j], d[j], lamb) Wj = W[:, j] # Grams smit reorthog if reorthog == True: W[:, :m], R = npm.linalg.qr(W[:, :m]) # compute low-D projection, reconstruction and relative error Y = W[:, :m].T * A[t, :].T # project to m-dimensional space xActual = A[t, :].T # actual vector of the current time xProj = W[:, :m] * Y # reconstruction of the current time Proj[t, :m] = Y.T recon[t, :] = xProj.T xOrth = xActual - xProj relErrors[t] = npm.sum(npm.power(xOrth, 2)) / npm.sum(npm.power(xActual, 2)) # update energy sumYSq = lamb * sumYSq + npm.sum(npm.power(Y, 2)) E_dash_t.append(sumYSq) sumXSq = lamb * sumXSq + npm.sum(npm.power(A[t, :], 2)) E_t.append(sumXSq) # Record RSRE if t == 0: top = 0.0 bot = 0.0 top = top + npm.power(npm.linalg.norm(xActual - xProj), 2) bot = bot + npm.power(npm.linalg.norm(xActual), 2) new_RSRE = top / bot if t == 0: RSRE = new_RSRE else: RSRE = npm.vstack((RSRE, new_RSRE)) ### Metric EVALUATION ### # deviation from truth if evalMetrics == "T": Qt = W[:, :m] if t == 0: res["subspace_error"] = npm.zeros((totalTime, 1)) res["orthog_error"] = npm.zeros((totalTime, 1)) res["angle_error"] = npm.zeros((totalTime, 1)) Cov_mat = npm.zeros([n, n]) # Calculate Covarentce Matrix of data up to time t Cov_mat = lamb * Cov_mat + npm.dot(xActual, xActual.T) # Get eigenvalues and eigenvectors WW, V = npm.linalg.eig(Cov_mat) # Use this to sort eigenVectors in according to deccending eigenvalue eig_idx = WW.argsort() # Get sort index eig_idx = eig_idx[::-1] # Reverse order (default is accending) # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted). V_k = V[:, eig_idx[:m]] # Calculate subspace error C = npm.dot(V_k, V_k.T) - npm.dot(Qt, Qt.T) res["subspace_error"][t, 0] = 10 * np.log10(npm.trace(npm.dot(C.T, C))) # frobenius norm in dB # Calculate angle between projection matrixes D = npm.dot(npm.dot(npm.dot(V_k.T, Qt), Qt.T), V_k) eigVal, eigVec = npm.linalg.eig(D) angle = npm.arccos(np.sqrt(max(eigVal))) res["angle_error"][t, 0] = angle # Calculate deviation from orthonormality F = npm.dot(Qt.T, Qt) - npm.eye(m) res["orthog_error"][t, 0] = 10 * np.log10(npm.trace(npm.dot(F.T, F))) # frobenius norm in dB # Energy thresholding ###################### # check the lower bound of energy level if sumYSq < energy[0] * sumXSq and lastChangeAt < t - holdOffTime and m < n: lastChangeAt = t m = m + 1 anomalies.append(t) # print 'Increasing m to %d at time %d (ratio %6.2f)\n' % (m, t, 100 * sumYSq/sumXSq) # check the upper bound of energy level elif sumYSq > energy[1] * sumXSq and lastChangeAt < t - holdOffTime and m < n and m > 1: lastChangeAt = t m = m - 1 # print 'Decreasing m to %d at time %d (ratio %6.2f)\n' % (m, t, 100 * sumYSq/sumXSq) W_hist.append(W[:, :m]) # set outputs # Grams smit reorthog if reorthog == True: W[:, :m], R = npm.linalg.qr(W[:, :m]) # Data Stores res2 = { "hidden": Proj, # Array for hidden Variables "E_t": np.array(E_t), # total energy of data "E_dash_t": np.array(E_dash_t), # hidden var energy "e_ratio": np.array(E_dash_t) / np.array(E_t), # Energy ratio "rel_orth_err": relErrors, # orthoX error "RSRE": RSRE, # Relative squared Reconstruction error "recon": recon, # reconstructed data "r_hist": k_hist, # history of r values "W_hist": W_hist, # history of Weights "anomalies": anomalies, } res.update(res2) return res
def SPIRIT(A, lamb, energy, k0=1, holdOffTime=0, reorthog=False, evalMetrics='F'): A = np.mat(A) n = A.shape[1] totalTime = A.shape[0] Proj = npm.ones((totalTime, n)) * np.nan recon = npm.zeros((totalTime, n)) # initialize w_i to unit vectors W = npm.eye(n) d = 0.01 * npm.ones((n, 1)) m = k0 # number of eigencomponents relErrors = npm.zeros((totalTime, 1)) sumYSq = 0. E_t = [] sumXSq = 0. E_dash_t = [] res = {} k_hist = [] W_hist = [] anomalies = [] # incremental update W lastChangeAt = 0 for t in range(totalTime): k_hist.append(m) # update W for each y_t x = A[t, :].T # new data as column vector for j in range(m): W[:, j], d[j], x = updateW(x, W[:, j], d[j], lamb) Wj = W[:, j] # Grams smit reorthog if reorthog == True: W[:, :m], R = npm.linalg.qr(W[:, :m]) # compute low-D projection, reconstruction and relative error Y = W[:, :m].T * A[t, :].T # project to m-dimensional space xActual = A[t, :].T # actual vector of the current time xProj = W[:, :m] * Y # reconstruction of the current time Proj[t, :m] = Y.T recon[t, :] = xProj.T xOrth = xActual - xProj relErrors[t] = npm.sum(npm.power(xOrth, 2)) / npm.sum( npm.power(xActual, 2)) # update energy sumYSq = lamb * sumYSq + npm.sum(npm.power(Y, 2)) E_dash_t.append(sumYSq) sumXSq = lamb * sumXSq + npm.sum(npm.power(A[t, :], 2)) E_t.append(sumXSq) # Record RSRE if t == 0: top = 0.0 bot = 0.0 top = top + npm.power(npm.linalg.norm(xActual - xProj), 2) bot = bot + npm.power(npm.linalg.norm(xActual), 2) new_RSRE = top / bot if t == 0: RSRE = new_RSRE else: RSRE = npm.vstack((RSRE, new_RSRE)) ### Metric EVALUATION ### #deviation from truth if evalMetrics == 'T': Qt = W[:, :m] if t == 0: res['subspace_error'] = npm.zeros((totalTime, 1)) res['orthog_error'] = npm.zeros((totalTime, 1)) res['angle_error'] = npm.zeros((totalTime, 1)) Cov_mat = npm.zeros([n, n]) # Calculate Covarentce Matrix of data up to time t Cov_mat = lamb * Cov_mat + npm.dot(xActual, xActual.T) # Get eigenvalues and eigenvectors WW, V = npm.linalg.eig(Cov_mat) # Use this to sort eigenVectors in according to deccending eigenvalue eig_idx = WW.argsort() # Get sort index eig_idx = eig_idx[::-1] # Reverse order (default is accending) # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted). V_k = V[:, eig_idx[:m]] # Calculate subspace error C = npm.dot(V_k, V_k.T) - npm.dot(Qt, Qt.T) res['subspace_error'][t, 0] = 10 * np.log10( npm.trace(npm.dot(C.T, C))) #frobenius norm in dB # Calculate angle between projection matrixes D = npm.dot(npm.dot(npm.dot(V_k.T, Qt), Qt.T), V_k) eigVal, eigVec = npm.linalg.eig(D) angle = npm.arccos(np.sqrt(max(eigVal))) res['angle_error'][t, 0] = angle # Calculate deviation from orthonormality F = npm.dot(Qt.T, Qt) - npm.eye(m) res['orthog_error'][t, 0] = 10 * np.log10( npm.trace(npm.dot(F.T, F))) #frobenius norm in dB # Energy thresholding ###################### # check the lower bound of energy level if sumYSq < energy[ 0] * sumXSq and lastChangeAt < t - holdOffTime and m < n: lastChangeAt = t m = m + 1 anomalies.append(t) # print 'Increasing m to %d at time %d (ratio %6.2f)\n' % (m, t, 100 * sumYSq/sumXSq) # check the upper bound of energy level elif sumYSq > energy[ 1] * sumXSq and lastChangeAt < t - holdOffTime and m < n and m > 1: lastChangeAt = t m = m - 1 # print 'Decreasing m to %d at time %d (ratio %6.2f)\n' % (m, t, 100 * sumYSq/sumXSq) W_hist.append(W[:, :m]) # set outputs # Grams smit reorthog if reorthog == True: W[:, :m], R = npm.linalg.qr(W[:, :m]) # Data Stores res2 = { 'hidden': Proj, # Array for hidden Variables 'E_t': np.array(E_t), # total energy of data 'E_dash_t': np.array(E_dash_t), # hidden var energy 'e_ratio': np.array(E_dash_t) / np.array(E_t), # Energy ratio 'rel_orth_err': relErrors, # orthoX error 'RSRE': RSRE, # Relative squared Reconstruction error 'recon': recon, # reconstructed data 'r_hist': k_hist, # history of r values 'W_hist': W_hist, # history of Weights 'anomalies': anomalies } res.update(res2) return res
def backPropagate_(self): '''Back-Propagate errors (and node responsibilities).''' self.d3__ = multiply(-(self.xs__ - self.a3__), 1 - power(self.a3__, 2)) self.d2__ = multiply(self.weights2_.T * self.d3__, 1 - power(self.a2__, 2))
def test_suite_1(): n1 = 100 n2 = 100 n = n1+n2 d = 5 eta = .1 degree = 3 iterations = 1 results = mat.zeros((8,5)) times = mat.zeros((1,5)) sigma = 2 # 1st col is non-kernelized # 2nd col is poly-kernel for itr in xrange(iterations): X = mat.randn(n1,d) Phi_X = poly.phi(X, degree) D0 = X + mat.rand(n2,d) / 1000 # Verify identity K(X,X) = 1 D1 = mat.randn(n2,d) # How does kernel perform iid data D2 = mat.rand(n2,d) # Uniform rather than normal distribution D3 = mat.randn(n2,d) * 2 + 2 # Linear transformation D4 = mat.power(mat.randn(n2,d) + 1 ,3) #Non-linear transformation D5 = mat.power(X+1,3) #non-linear transformation of the D0 dataset; D6 = mat.rand(n2,d)/100 + mat.eye(n2,d) #Totally different data - should have low similarity D7 = mat.rand(n2,d)/100 + mat.eye(n2,d)*5 # Scaled version of D7 Data = [D0, D1, D2, D3, D4, D5, D6, D7] for idx in xrange(8): D = Data[idx] start = time.time() results[idx, 0] += nk_bhatta(X, D, 0) nk = time.time() emp = time.time() results[idx, 1] += Bhattacharrya(X,D,gaussk(sigma),eta,5) e5 = time.time() results[idx, 2] += Bhattacharrya(X,D,gaussk(sigma),eta,15) e15 = time.time() results[idx, 3] += Bhattacharrya(X,D,gaussk(sigma),eta,25) e25 = time.time() nktime = nk-start emptime = emp-nk e5time = e5-emp e15time = e15-e5 e25time = e25-e15 print "nk: {:.1f}, emp: {:.1f}, e5: {:.1f}, e15: {:.1f}, e25: {:.1f}".format(nktime, emptime, e5time, e15time, e25time) times[0,0]+= nktime times[0,4]+= emptime times[0,1]+= e5time times[0,2]+= e15time times[0,3]+= e25time