Exemple #1
0
def random_branch(romes, rho, m, mean_hirings, siret='.', nb='.'):
    return Branch(rd.choice(romes),
                  rd.choice(rho),
                  m[rd.choice(range(len(m)))],
                  rd.chisquare(mean_hirings),
                  siret=siret,
                  nb=nb)
def random_modi(size):
    x = randn(size)
    range_y = np.exp2(0.3 * x**3 + np.sqrt(abs(x)))
    range_y[np.where(range_y>1.3)] = 0.23 * \
                                chisquare(13,np.where(range_y>1.3)[0].size)
    factor_y = range_y / 3.0 * randn(size) * 0.1
    return (factor_y)
def rwish(shape, scale, samples=1):
    '''
    Generate random samples from Wishart distribution.  Based on rwish() in the MCMCpack R package.
    That package is licensed under GPL-v3 and can be found:
    http://cran.r-project.org/web/packages/MCMCpack/index.html
    
    :attr:`shape` is the shape parameter, a real number.
    :attr:`scale` is the scale parameter, a square matrix whose dimensions must not be greater than the shape parameter
    :attr:`samples` is the number of random samples to return
    '''
    if len(scale.shape) != 2:
        if scale.shape[0] != 1:
            raise ValueError('Scale parameter must be a 2-D matrix')
    if scale.shape[0] != scale.shape[1]:
        raise ValueError('Scale parameter must be a square matrix')

    p = scale.shape[0]
    if shape < p:
        raise ValueError(
            'Shape parameter must be equal to or greater than the number of dimensions.'
        )

    chol = la.cholesky(scale)
    result = np.zeros((samples, p, p))
    for i in range(samples):
        z = np.eye(p)
        z = z * np.sqrt(npr.chisquare([x + shape
                                       for x in range(0, -p, -1)], p))
        if p > 1:
            pseq = range(1, p)
            z[np.triu_indices(p, 1)] = np.random.normal(size=p * (p - 1) / 2)
        a = chol.dot(z)
        result[i] = a.dot(a.T)

    return result
Exemple #4
0
def chisquareAverage(numSamples=100000):
    runningSum = 0

    for _ in range(numSamples):
        runningSum += chisquare(2)

    return runningSum/numSamples
 def generate(self, S) -> np.ndarray:
     gaussian = rd.multivariate_normal(np.zeros(N), self.cov, S)
     chi2 = rd.chisquare(self.nu, (S, 1))
     LogScenarios = gaussian / np.sqrt(self.nu / chi2) + np.array(self.mean)
     return np.concatenate(((1 + self.r) * np.ones(
         (S, 1)), np.exp(LogScenarios)),
                           axis=1)
Exemple #6
0
def MiChisquare(dof):
    """ChiSquare Distribution Function
        dof: Degrees of Freedom"""
    global manflag
    if not manflag:
        setManual()
    return np.chisquare(dof,1)
Exemple #7
0
 def chi2_mean_std(self, mean=1., std=0.1):
     '''
     Chi-squared random variable with given mean and standard deviation.
     '''
     scale = 2. * mean / std
     nu = mean * scale
     return npr.chisquare(nu) / scale
def rwish(shape, scale, samples=1):
    '''
    Generate random samples from Wishart distribution.  Based on rwish() in the MCMCpack R package.
    That package is licensed under GPL-v3 and can be found:
    http://cran.r-project.org/web/packages/MCMCpack/index.html
    
    :attr:`shape` is the shape parameter, a real number.
    :attr:`scale` is the scale parameter, a square matrix whose dimensions must not be greater than the shape parameter
    :attr:`samples` is the number of random samples to return
    '''
    if len(scale.shape) != 2:
        if scale.shape[0] != 1:
            raise ValueError('Scale parameter must be a 2-D matrix')
    if scale.shape[0] != scale.shape[1]:
        raise ValueError('Scale parameter must be a square matrix')
    
    p = scale.shape[0]
    if shape < p:
        raise ValueError('Shape parameter must be equal to or greater than the number of dimensions.')
    
    chol = la.cholesky(scale)
    result = np.zeros((samples,p,p))
    for i in range(samples):
        z = np.eye(p)
        z = z * np.sqrt(npr.chisquare([x+shape for x in range(0,-p,-1)],p))
        if p > 1:
            pseq = range(1,p)
            z[np.triu_indices(p,1)] = np.random.normal(size=p*(p-1)/2)
        a = chol.dot(z)
        result[i] = a.dot(a.T)
    
    return result

    
def get_dist_num(args):
    dist = args[0]

    for i in range(len(args[1:])):
        args[i + 1] = float(args[1:][i])

    if dist == 'EXP':
        return exponential(args[1])
    elif dist == 'NOR':
        return normal(loc=args[1],
                      scale=args[2])  # loc = média , scale = desvio
    elif dist == 'TRI':
        return triangular(args[1], args[2], args[3])
    elif dist == 'UNI':
        return uniform(low=args[1], high=args[2])
    elif dist == 'BET':
        return beta(args[1], args[2])
    elif dist == 'WEI':
        return weibull(args[1])
    elif dist == 'CAU':  # CAU: Cauchy
        return 0
    elif dist == 'CHI':
        return chisquare(args[1])
    elif dist == 'ERL':  # ERL: Erlang
        return 0
    elif dist == 'GAM':
        return gamma(args[1], scale=args[2])
    elif dist == 'LOG':
        return lognormal(mean=args[1], sigma=args[2])
    elif dist == 'PAR':
        return pareto(args[1])
    elif dist == 'STU':
        return standard_t(args[1])
def estimate_sigma_e(s_e, y, X, b, Z, u, tau_e, Tau_e, family_indices):
    """
        Updates the estimate for sigma_e
    """

    y_copy = y.copy()
    X_copy = X.copy()
    Z_copy = Z.copy()

    S_t = 0

    for family_ind in family_indices:

        # Calculate the S_t for every group m separately
        y_subset = np.squeeze(y_copy[family_ind])
        X_subset = X_copy[family_ind]
        Z_subset = Z_copy[family_ind]
        s_e_i = s_e[family_ind][0]

        S_t_m = calculate_sum(s_e_i, y_subset, X_subset, b, Z_subset, u)
        S_t = S_t + S_t_m

    nominator = (tau_e * Tau_e) + S_t
    df = tau_e + len(y)

    sigma_estimate = nominator / chisquare(df=df)

    return sigma_estimate
def estimate_s_e(sigma_e, nu_e, y, X, b, Z, u, family_indices):
    """
        Generates s_e for each i, where i = {1, ..., m} and m is the number of groups. In this case m is the number of families.
    """

    # Initialize s_e
    s_e = np.zeros(len(y))

    for ind in family_indices:
        y_copy = np.squeeze(y.copy())
        X_copy = X.copy()
        Z_copy = Z.copy()

        # Calculate the S_e for every other observation, except belonging to this group
        y_subset = y_copy[ind]
        X_subset = X_copy[ind, :]
        Z_subset = Z_copy[ind, :]

        S_e = calculate_S_e(sigma_e, nu_e, y_subset, X_subset, b, Z_subset, u)

        # Calculate the estimate for the family i
        df = nu_e + len(ind)
        s_e_i = chisquare(df) / S_e

        # Update the s_e for ith family
        s_e[ind] = s_e_i

    return s_e
Exemple #12
0
def generate_Wishart(n, V):
    """
    Generate a sample from Wishart density

    Parameters
    ----------
    n: float,
        the number of degrees of freedom of the Wishart density
    V: array of shape (n,n)
       the scale matrix of the Wishart density

    Returns
    -------
    W: array of shape (n,n)
       the draw from Wishart density
    """
    icv = cholesky(V)
    p = V.shape[0]
    A = nr.randn(p, p)
    for i in range(p):
        A[i, i:] = 0
        A[i, i] = np.sqrt(nr.chisquare(n - i))
    R = np.dot(icv, A)
    W = np.dot(R, R.T)
    return W
Exemple #13
0
def distribution():
    sample_size = 500
    rn1 = npr.standard_normal(sample_size)
    rn2 = npr.normal(100, 20, sample_size)
    rn3 = npr.chisquare(df=0.5, size=sample_size)
    rn4 = npr.poisson(lam=1.0, size=sample_size)

    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2,
                                                 ncols=2,
                                                 figsize=(10, 8))

    ax1.hist(rn1, bins=25, stacked=True)
    ax1.set_title('Standard normal')
    ax1.set_ylabel('frequency')

    ax2.hist(rn2, bins=25)
    ax2.set_title('Normal 100,20')

    ax3.hist(rn3, bins=25)
    ax3.set_title('Chi squared')
    ax3.set_ylabel("frequency")

    ax4.hist(rn4, bins=25)
    ax4.set_title('Poisson')
    plt.show()
Exemple #14
0
def generate_Wishart(n, V):
    """
    Generate a sample from Wishart density

    Parameters
    ----------
    n: float,
        the number of degrees of freedom of the Wishart density
    V: array of shape (n,n)
       the scale matrix of the Wishart density

    Returns
    -------
    W: array of shape (n,n)
       the draw from Wishart density
    """
    icv = cholesky(V)
    p = V.shape[0]
    A = nr.randn(p, p)
    for i in range(p):
        A[i, i:] = 0
        A[i, i] = np.sqrt(nr.chisquare(n - i))
    R = np.dot(icv, A)
    W = np.dot(R, R.T)
    return W
Exemple #15
0
def generateStudentTScenarios(NbScenarios=1000,
                              nu=3,
                              start=None,
                              end=None,
                              seed=None):
    """
    Generates random scenarios based on a multivariate 'student' t distribution of the log returns.
        - NbScenarios: int    - Number of scenarios to compute
        - start/end:   period - Period on which to compute the
                                variance-covariance matrix
        - seed:        int    - Seed for random generation
    """
    LocalData = Data[start:end]
    LocalReturns = (LocalData / LocalData.shift() - 1)[1:]
    MeanLocalReturns = LocalReturns.mean()
    CovLocalReturns = LocalReturns.cov()

    if seed is not None:
        rd.seed(seed)

    gaussian = rd.multivariate_normal(np.zeros(len(Data.columns)),
                                      CovLocalReturns, NbScenarios)
    chi2 = rd.chisquare(nu, (NbScenarios, 1))
    scenarios = gaussian / np.sqrt(nu / chi2) + np.array(MeanLocalReturns)
    probas = np.ones(NbScenarios) / NbScenarios
    return scenarios, probas
def estimate_sigma_u(s_u, y, X, b, Z, u, tau_u, Tau_u):
    covariance_u = calculate_uAu(Z.copy(), u.copy())
    nominator = (tau_u*Tau_u + s_u*covariance_u)

    df = tau_u + Z.shape[1]
    updated_sigma_u = nominator / chisquare(df=df)

    return updated_sigma_u
def estimate_s_u(Z, u, sigma_u, nu_u):
    """
        Generates s_u for each familial random effect.
    """
    df = nu_u + Z.shape[1]
    scaler = calculate_covariance_u(Z.copy(), u.copy(), sigma_u, nu_u)
    s_u_estimate = chisquare(df) / scaler

    return s_u_estimate
Exemple #18
0
def simulateCopula(simulations=10, type=str('g'), rho=float, lamda=tuple, tDof=4, basketSize=5, useGPU=False):
    result = []
    """

    $\tau = F^{-1}(u) = -\frac{log(1-u)}{\lambda}$

    """
    print 'simulating t distribution' if type == 't' else 'simulating gaussian dist'

    for z in xrange(0, simulations):
        # for the t distribution we use the same method but
        # sample from the chisquared distribution
        # if GPU is enabled, hand over to GPU to provide random number sample
        if useGPU and type == 'g':
            z1, z2, z3, z4, z5 = rng.getPseudoRandomNumbers_Standard_cuda(basketSize)
        else:
            z1, z2, z3, z4, z5 = random.chisquare(tDof, size=basketSize) if type == 't' else random.normal(size=5)
        # z1, z2, z3, z4, z5 = chi2.rvs(1, size=5) if type == 't' else random.normal(size=5)

        x1 = z1

        # using factorised copula procedure
        # $A_i = w_iZ + \sqrt{1-w{^2}{_i}\Epsilon_i $
        x2, x3, x4, x5 = [z1 * rho + sqrt(1 - square(rho)) * zn for zn in [z2, z3, z4, z5]]

        # converting to normal variables from t or normal distribution successfully
        # via cdf of relevant distribution
        if type == 't':
            u1, u2, u3, u4, u5 = [t.cdf(x, 1) for x in [x1, x2, x3, x4, x5]]
        else:
            u1, u2, u3, u4, u5 = [norm.cdf(x) for x in [x1, x2, x3, x4, x5]]
        u = [u1, u2, u3, u4, u5]
        # $\tau_i = -\frac{-log(1-u)}{\lambda_i} $
        tau1, tau2, tau3, tau4, tau5 = [-log(1 - u) / lamda[index] for index, u in enumerate(u)]
        result.append({'z1': z1,
                       'z2': z2,
                       'z3': z3,
                       'z4': z4,
                       'z5': z5,
                       'x1': x1,
                       'x2': x2,
                       'x3': x3,
                       'x4': x4,
                       'x5': x5,
                       'u1': u1,
                       'u2': u2,
                       'u3': u3,
                       'u4': u4,
                       'u5': u5,
                       'tau1': tau1,
                       'tau2': tau2,
                       'tau3': tau3,
                       'tau4': tau4,
                       'tau5': tau5,
                       })

    return DataFrame(result)
Exemple #19
0
 def SigmaPrior():
     Lambda = 0.2
     m = 5
     DegreeOfFreedom = n_obs + m - 1
     sigma_sq_inv = rand.chisquare(DegreeOfFreedom)
     sigma_sq = dict()
     sigma_sq['Value'] = float(m * Lambda) / sigma_sq_inv
     sigma_sq['Lambda'] = Lambda
     sigma_sq['m'] = m
     return sigma_sq
Exemple #20
0
 def chi2_mean_std(self,mean=1.,std=0.1):
     """
     Chi-squared random variable with given mean and standard deviation.
     :param mean: 
     :param std: 
     :return: 
     """
     scale = 2.*mean/std
     nu = mean*scale
     return npr.chisquare(nu)/scale
def gen_logit(N):
    Data=[]
    for n in range(N):
        x1=nprd.normal()*1.414+1
        x2=nprd.chisquare(2)
        d_star=beta_0+beta_1*x1+beta_2*x2
        p_star=Logistic(d_star)
        d=(1 if nprd.uniform()<p_star else 0)
        Data.append((d,x1,x2))
    return Data
 def time_to_mutation_rate(tree):
     if not hasattr(GC, "NUMPY_SEEDED"):
         from numpy.random import seed as numpy_seed
         numpy_seed(seed=GC.random_number_seed)
         GC.random_number_seed += 1
         GC.NUMPY_SEEDED = True
     t = read_tree_newick(tree)
     for node in t.traverse_preorder():
         if node.edge_length is not None:
             node.edge_length *= chisquare(df=GC.tree_rate_df)
     return str(t)
Exemple #23
0
 def UpdateSigma():
     Alpha = Parameters.Alpha['Value']
     Lambda = Parameters.Sigma_Sq['Lambda']
     m = Parameters.Sigma_Sq['m']
     v = Log_H - Alpha[0] - Alpha[1] * Log_Lag_H
     Numerator = m * Lambda + np.sum(np.square(v))
     Chi2Draw = rand.chisquare(df=m + len(v) - 1)
     NewValue = Numerator / Chi2Draw
     NewSigma_Sq = Parameters.Sigma_Sq.copy()
     NewSigma_Sq['Value'] = NewValue
     return NewSigma_Sq
Exemple #24
0
def empiricalEW(i, w, p, numSamples=100000):
    runningSum = 0

    for _ in range(numSamples):

        x = chisquare(2)

        eigPart = (p*(1-p)*x)/(2*w)

        runningSum += log(eigPart + 1, 2)

    return runningSum/numSamples
 def _loop_gain_ll(self, cur_select, cur_update):
     """循环获取经纬度的信息"""
     failure = 0
     while cur_select.rownumber < cur_select.rowcount:
         try:
             sample_info = cur_select.fetchone()
             self._gain_ll(sample_info, cur_update)
             i = chisquare(0.5)
             time.sleep(i)
         except:
             failure += 1
             print(u'经纬度获取失败,累计获取失败样本:%d 条' % failure)
         finally:
             self.conn.commit()
def PlotRandomSVD(nrow=51,ncol=51,std=1,dist='normal'):

    if dist=='normal':
       Q = random.normal(0,std,nrow * ncol).reshape(nrow,ncol)
    elif dist=='chisq':
       Q = random.chisquare(std,nrow * ncol).reshape(nrow,ncol)
    else:  raise ValueError(dist + " Unknown dist choice")

    U,S,V = np.linalg.svd(np.matrix(Q),full_matrices=True)

    plt.plot(np.arange(S.shape[0]),S)
  
    plt.xlabel('Descending Sorted Order')
    plt.ylabel('%s Random Eigen Values'%(dist.upper()))
Exemple #27
0
def PlotRandomSVD(nrow=51, ncol=51, std=1, dist='normal'):

    if dist == 'normal':
        Q = random.normal(0, std, nrow * ncol).reshape(nrow, ncol)
    elif dist == 'chisq':
        Q = random.chisquare(std, nrow * ncol).reshape(nrow, ncol)
    else:
        raise ValueError(dist + " Unknown dist choice")

    U, S, V = np.linalg.svd(np.matrix(Q), full_matrices=True)

    plt.plot(np.arange(S.shape[0]), S)

    plt.xlabel('Descending Sorted Order')
    plt.ylabel('%s Random Eigen Values' % (dist.upper()))
Exemple #28
0
def random_numbers():
    print(npr.rand(10))
    print(npr.rand(5,5))
    #interval a to b, 5 to 10
    a = 5; b=10
    print(npr.rand(10)*(b-a) + a)
    
    sample_size = 500
    rn1 = npr.rand(sample_size, 3)
    rn2 = npr.randint(0, 10, sample_size)
    rn3 = npr.sample(size = sample_size)
    a = [0, 25, 50, 75, 100]
    rn4 = npr.choice(a, size = sample_size)
    
    print("rn1 : %s" % rn1)
    print("rn2 : %s" % rn2)
    print("rn3 : %s" % rn3)
    print("rn4 : %s" % rn4)
    
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(7, 7))
    
    ax1.hist(rn1, bins=25, stacked=True) ; ax1.set_title("rand") ; ax1.set_ylabel("frequency") ; ax1.grid(False)
    ax2.hist(rn2, bins=25) ; ax2.set_title("randint") ; ax2.grid(True)
    ax3.hist(rn3, bins=25) ; ax3.set_title("sample") ; ax3.set_ylabel("frequency")
    ax4.hist(rn4, bins=25) ; ax4.set_title("choice") ; ax4.grid(True)
    plt.show()
    
    #distributions
    sample_size = 500
    rn1 = npr.standard_normal(sample_size)
    rn2 = npr.normal(100, 20, sample_size)
    rn3 = npr.chisquare(df=0.5, size=sample_size)
    rn4 = npr.poisson(lam=1.0, size=sample_size)
    
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(10,10))
    ax1.hist(rn1, bins=25) ; ax1.set_title("standard normal") ; ax1.set_ylabel("frequency") ; ax1.grid(True)
    ax2.hist(rn2, bins=25) ; ax2.set_title("normal(100, 20)") ; ax2.set_xlabel("hi") ; ax2.grid(True)
    ax3.hist(rn3) ; ax3.set_title("chi square") ; ax3.set_ylabel("frequency") ; ax3.grid(True)
    ax4.hist(rn4, bins=100) ; ax4.set_title("Poisson")
    plt.show()
    pass
Exemple #29
0
    def rvs(self):
        # Random normal variates for off-diagonal elements
        n_tril = self.dim * (self.dim - 1) // 2
        covariances = npr.normal(size=n_tril).reshape((n_tril,))

        # Random chi-square variates for diagonal elements
        variances = (np.r_[[npr.chisquare(self.nu - (i + 1) + 1, size=1)**0.5
                            for i in range(self.dim)]].reshape((self.dim,)).T)

        A = np.zeros((self.dim, self.dim))

        # Input the covariances
        tril_idx = np.tril_indices(self.dim, k=-1)
        A[tril_idx] = covariances

        # Input the variances
        diag_idx = np.diag_indices(self.dim)
        A[diag_idx] = variances

        T = np.dot(self.psi_chol, A)
        return np.dot(T, T.T)
def distribute(args):
    n = args.s
    feats = args.f
    if n >= 10**6:
        csv_name = f"{int(n/10**6)}M"
    else:
        csv_name = f"{int(n/10**3)}K"

    base = np.random.normal(loc=.5, scale=.5, size=n)
    correlated = []
    epsilons = [
        np.random.normal(loc=.5, scale=.5, size=n) for _ in range(feats)
    ]
    labels = list(string.ascii_lowercase.upper()[0:10])
    uniform = random.uniform(size=(feats, n))
    normal = random.normal(loc=.5, scale=5, size=(feats, n))
    chisquare = random.chisquare(df=feats, size=(feats, n))
    for index, i in enumerate(epsilons):
        if index == 0:
            correlated.append(base)
        else:
            correlated.append(base + random.uniform(0.5, 1) * i)
    for index, x in enumerate(correlated):
        correlated[index] = (x - min(x)) / (max(x) - min(x))
    for index, x in enumerate(normal):
        normal[index] = (x - min(x)) / (max(x) - min(x))
    for index, x in enumerate(chisquare):
        chisquare[index] = (x - min(x)) / (max(x) - min(x))

    uniform_df = pd.DataFrame(data=uniform.T, columns=labels[0:feats])
    normal_df = pd.DataFrame(data=normal.T, columns=labels[0:feats])
    chisquare_df = pd.DataFrame(data=chisquare.T, columns=labels[0:feats])
    correlated_df = pd.DataFrame(data=np.array(correlated).T,
                                 columns=labels[0:feats])

    uniform_df.to_csv(f"{csv_name}x{feats}_uniform.csv", index=False)
    normal_df.to_csv(f"{csv_name}x{feats}_normal.csv", index=False)
    chisquare_df.to_csv(f"{csv_name}x{feats}_chisquare.csv", index=False)
    correlated_df.to_csv(f"{csv_name}x{feats}_correlated.csv", index=False)
Exemple #31
0
def generate_Wishart(n,V):
    """
    Generate a sample from Wishart

    Parameters
    ----------
    n (scalar) = the number of degrees of freedom (dofs)
    V = array of shape (n,n) the scale matrix

    Returns
    -------
    W: array of shape (n,n): the Wishart draw
    """
    from numpy.linalg import cholesky
    L = cholesky(V)
    p = V.shape[0]
    A = nr.randn(p,p)
    a = np.array([np.sqrt(nr.chisquare(n-i)) for i in range(p)])
    for i in range(p):
        A[i,i:] = 0
        A[i,i] = a[i]
    R = np.dot(L,A)
    W = np.dot(R,R.T)
    return W
Exemple #32
0
    def rvs(self, size=1):
        # Random normal variates for off-diagonal elements
        n_tril = self.dim * (self.dim - 1) // 2
        covariances = npr.normal(size=n_tril).reshape((n_tril, ))

        # Random chi-square variates for diagonal elements
        variances = (np.r_[[
            npr.chisquare(self.nu - (i + 1) + 1, size=1)**0.5
            for i in range(self.dim)
        ]].reshape((self.dim, )).T)

        A = np.zeros((self.dim, self.dim))

        # Input the covariances
        tril_idx = np.tril_indices(self.dim, k=-1)
        A[tril_idx] = covariances

        # Input the variances
        diag_idx = np.diag_indices(self.dim)
        A[diag_idx] = variances

        eye = np.eye(self.dim)

        L, lower = sc.linalg.cho_factor(self.psi, lower=True)
        inv_scale = sc.linalg.cho_solve((L, lower), eye)
        C = sc.linalg.cholesky(inv_scale, lower=True)

        trtrs = get_lapack_funcs(('trtrs'), (A, ))

        T = np.dot(C, A)
        if self.dim > 1:
            T, _ = trtrs(T, eye, lower=True)
        else:
            T = 1. / T

        return np.dot(T.T, T)
ax3.hist(rn3, bins=25)
ax3.set_title('sample')
ax3.set_ylabel('frequency')
ax3.grid(True)
ax4.hist(rn4, bins=25)
ax4.set_title('choice')
ax4.grid(True)

plt.show()

## Generating Random Numbers using distributions.
# A few select functions below from numpy random library
sample_size = 500
rn1 = npr.standard_normal(sample_size)          # standard normal distribution
rn2 = npr.normal(100, 20, sample_size)                       # normal distribution
rn3 = npr.chisquare(df=0.5, size=sample_size)   # chi square distribution
rn4 = npr.poisson(lam=1.0, size=sample_size)    # Poisson distribution

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(7, 7))

ax1.hist(rn1, bins=25)
ax1.set_title('standard normal')
ax1.set_ylabel('frequency')
ax1.grid(True)
ax2.hist(rn2, bins=25)
ax2.set_title('normal (100,20)')
ax2.grid(True)
ax3.hist(rn3, bins=25)
ax3.set_title('chi square')
ax3.set_ylabel('frequency')
ax3.grid(True)
Exemple #34
0
 def _numpy(self, loc=0.0, scale=1.0, size=(1,)):
     return lambda: nr.chisquare(df=self.df, size=size) * scale + loc
# chi_square_distribution

# used as a basis to verify the hypothesis

# It has two parameters

# df - (degree of freedom)
# size - the shape of the returned array

# Draw out a sample for chi squared distribution with degree of freedom 2 with size 2x3

from numpy import random

x = random.chisquare(df=2, size=(2, 3))

print(x)

# visualization of chi-square distribution

# from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

sns.distplot(random.chisquare(df=1, size=1000), hist=False)
plt.show()
Exemple #36
0
import numpy.random as rnd
from matplotlib import pyplot as plt

labels = [
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
    22, 23, 24, 25, 26, 27, 28, 29, 30
]

rnd01 = rnd.normal(0, 2, 30)
rnd02 = rnd.chisquare(1, 30)
rnd03 = rnd.exponential(1, 30)

plt.subplot(1, 3, 1)
plt.scatter(x=labels, y=rnd01)
plt.xlabel('normal')
plt.subplot(1, 3, 2)
plt.scatter(x=labels, y=rnd02)
plt.xlabel('chisquare')
plt.subplot(1, 3, 3)
plt.scatter(x=labels, y=rnd03)
plt.xlabel('exponential')
plt.show()
Exemple #37
0
def np_chi_square_distribution():
    x = random.chisquare(df=2, size=(2, 3))
    print(x)
    sns.distplot(random.chisquare(df=1, size=1000), hist=False)
    plt.show()
Exemple #38
0
def rstudent(mu, lam, alpha):
    X = R.chisquare(alpha, mu.shape)
    Z = R.standard_normal(mu.shape)
    return mu + Z * sqrt(alpha / X) / sqrt(lam)
Exemple #39
0
#    normalizedH = h/sqrt(n)

    e1 = np.linalg.eig(normalizedC)
#    e2 = np.linalg.eig(normalizedH)

#    print e1[0]
#    print e2[0]


#    x1 = sorted(np.multiply(e1[0], np.conjugate(e1[0])))
#    x2 = sorted(np.multiply(e2[0], np.conjugate(e2[0])))
    x1 = np.multiply(e1[0], np.conjugate(e1[0]))
#    x2 = np.multiply(e2[0], np.conjugate(e2[0]))
#    print x1

    x3 = chisquare(2, int((n-1)/2))

#    print x3.shape

    x3 = sorted(np.repeat(x3, 2))

#    print x3

    pl.plot(x1[:-1], "b-")
#    pl.plot(x2[:-1], "r-")
#    pl.plot(x3, "g-")
    pl.show()

    sys.exit()

if False:
def f(x, n):
    """calculation of chi-squared"""
    return ((exp(-x/2))*x**((n/2)-1))/((2**(n/2))*sp.gamma(n/2))

def Prob(chi, n):
    """return probability that X**2> definit limit"""
    # return 1-integrate.quad(lambda x: f(x, n), 0, alpha)[0]
    return st.chi2.sf(chi, n)    
    
# Main
N  = 10000                      # number of repetitions
n  = 10.                         # degrees of freedome
mu = 130                        # mean
sigma = sqrt(n)                 # mean derivation
x_arr = linspace(0, 50, 1000, endpoint=False)   # an array
chi = chisquare(n, N)           # Random distribution chi-squared

#Draw function
plt.figure(1, figsize=[15, 8])                                    
#plt.subplot(111)
#plt.hist(chi, bins=300, label='datos', normed=True)
#plt.plot(x_arr, f(x_arr, n), '-', color='r', label='funciona chi-quadrado')
#plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)


plt.subplot(111)
plt.axis([0, 50, 0, 0.16])
plt.hist(distribucion(chiqua, mu, sigma, n, N), bins=100, label='datos', normed=True)
plt.plot(x_arr, f(x_arr, n), '-', color='r', label='funciona chi-quadrado')
#plt.plot(x_arr, f(x_arr, n*3.5), '-', color='y', label='nueva aproximacion de funciona chi-quadrado')
plt.legend(loc=1)
# chi square distribution is used as a basis to verify hypothesis.
# it has two parameters
# df - (degree of freedom).
# size - shape of returned array.
from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

arr1 = random.chisquare(df=1000, size=10)
print(arr1)
sns.distplot(arr1, hist=False)
plt.show()
Exemple #42
0
ax2.set_title('randint')
ax2.grid(True)
ax3.hist(rn3,bins=25)
ax3.set_title('sample')
ax3.set_ylabel('frequency')
ax3.grid(True)
ax4.hist(rn4,bins=25)
ax4.set_title('choice')
ax4.grid(True)

#Visualize random draws from distributions

sample_size=500
rn1=npr.standard_normal(sample_size)
rn2=npr.normal(100,20,sample_size)
rn3=npr.chisquare(df=0.5,size=sample_size)
rn4=npr.poisson(lam=1.0,size=sample_size)

fig,((ax1,ax2),(ax3,ax4))=plt.subplots(nrows=2,ncols=2,figsize=(7,7))

ax1.hist(rn1,bins=25,stacked=True)
ax1.set_title('standard normal')
ax1.set_ylabel('frequency')
ax1.grid(True)
ax2.hist(rn2,bins=25)
ax2.set_title('normal(100,20)')
ax2.grid(True)
ax3.hist(rn3,bins=25)
ax3.set_title('chi square')
ax3.set_ylabel('frequency')
ax3.grid(True)
import numpy as np
import numpy.random as npr
import matplotlib.pyplot as plt

sample_size = 500
rn1 = npr.standard_normal(sample_size)
rn2 = npr.normal(100, 20, sample_size)
rn3 = npr.chisquare(df=0.5, size=sample_size)
rn4 = npr.poisson(lam=1.0, size=sample_size)

print(rn1)
print(rn2)
print(rn3)
print(rn4)

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(7, 7))
ax1.hist(rn1, bins=25)
ax1.set_title('standard normal')
ax1.set_ylabel('frequency')
ax1.grid(True)
ax2.hist(rn2, bins=25)
ax2.set_title('normal(100, 20)')
ax2.grid(True)
ax3.hist(rn3, bins=25)
ax3.set_title('chi square')
ax3.set_ylabel('frequency')
ax3.grid(True)
ax4.hist(rn4, bins=25)
ax4.set_title('Poisson')
ax4.grid(True)