def nextBatch(self, batchSize, window, C): batch = np.zeros((batchSize, len(self.trigrams.tri))) label = np.zeros((batchSize, 1)) bind = 0 assert(batchSize % C == 0) assert(2 * window >= C) while True: s = max(0, self.worPtr - window) e = min(len(self.data), self.worPtr + window + 1) self.trigrams.triList(self.data[self.worPtr], batch[bind : bind + C]) if e - s - 1 < C: self.worPtr = self.worPtr + 1 continue visited = [self.worPtr] for i in range(C): add = rint(s, e) while add in visited: add = rint(s, e) label[bind] = self.vocab.get(self.data[add], 0) visited.append(add) bind = bind + 1 self.worPtr = self.worPtr + 1 if self.worPtr == len(self.data): self.worPtr = 0 if bind == batchSize: return [batch, label] return [batch, label]
def test_universal_str(m, n): u = 256 randstr = lambda: ''.join(map(chr, rint(0, u, rint(3, 25)))) S = [randstr() for i in range(n)] h = uhashstr(u, m) H = [h(s) for s in S] import matplotlib.pyplot as plt #plt.hist(H) plt.hist(H, m) plt.xlim((0, m)) plt.show()
def __init__(self, u, m, p = None): if p is None: p = primes[np.searchsorted(primes, max(u, m))] self.p, self.u, self.m = p, u, m self.a = rint(1, p) self.h = uhashint(p, m) self.c = self.a**np.arange(100).astype(object)
def fix_img(cap, frame, path, resize_shape, final_shape, mean, use_flip=False): num = random.sample(list(range(4)), 1)[0] cap.decode(path, 3, num, final_shape[1], 1, frame.ctypes._data) flip_rand = rint(0, 1) if flip_rand == 1 and use_flip: clip = np.flip(frame, 2).copy() else: clip = frame.copy() return clip
def roll_die(val): from numpy.random import randint as rint out = 0 plus_parts = val.split('+') for pp in plus_parts: minus_parts = pp.split('-') for mp in minus_parts[1:]: try: if 'd' in mp: n, d = mp.split('d') else: d = 1 #We have a constant bonus, the die rolls will be 1 n = mp if n.strip() == '': n = 1 n = int(n) d = int(d) out -= sum(rint(1, d + 1, n)) #rolling the die except ValueError: return None try: if 'd' in minus_parts[0]: n, d = minus_parts[0].split('d') else: d = 1 #We have a constant bonus, the die rolls will be 1 n = minus_parts[0] if n.strip() == '': n = 1 n = int(n) d = int(d) out += sum(rint(1, d + 1, n)) except ValueError: return None print out return out
def roll_die(val): from numpy.random import randint as rint out = 0 plus_parts = val.split('+') for pp in plus_parts: minus_parts = pp.split('-') for mp in minus_parts[1:]: try: if 'd' in mp: n,d = mp.split('d') else: d =1 #We have a constant bonus, the die rolls will be 1 n = mp if n.strip() == '': n = 1 n = int(n) d = int(d) out -= sum(rint(1,d+1,n)) #rolling the die except ValueError: return None try: if 'd' in minus_parts[0]: n,d = minus_parts[0].split('d') else: d = 1#We have a constant bonus, the die rolls will be 1 n = minus_parts[0] if n.strip() == '': n = 1 n = int(n) d = int(d) out += sum(rint(1,d+1,n)) except ValueError: return None print out return out
def test_universal_int(u, m, n, l = None): print 'u:', u print 'm:', m print 'n:', n X = rint(0, u, n) if l: H = [uhashint(u, m) for i in range(l)] Y = [] for h in H: Y.extend([h(x) for x in X]) else: h = uhashint(u, m) Y = [h(x) for x in X] import matplotlib.pyplot as plt plt.hist(Y, m) plt.xlim((0, m)) plt.show()
'z', 'c', 'v', 'b', 'n', 'm' ], [ 'A', 'D', 'T', 'X', 'Q', 'W', 'R', 'P', 'S', 'F', 'G', 'H', 'J', 'K', 'L', 'Z', 'C', 'V', 'B', 'N', 'M' ]] colorNames = ['cyan', 'yellow', 'black', 'magenta', 'red'] colors = [(-1., 1., 1.), (1., 1., -1.), (-1., -1., -1.), (1., -1., 1.), (1., -1., -1.)] targets = ['A', 'D', 'T', 'X'] responseTimes = numpy.zeros(numStim * numBlocks) output = [] # dependent variables stimLetter = rint(0, numLetters, (numStim, numBlocks)) stimColor = rint(0, numColors, (numStim, numBlocks)) stimCase = rint(0, numCases, (numStim, numBlocks)) stimTarget = [] for i in range(numBlocks): stimTarget.append(targets[i % 4]) # getting user input Participant = raw_input("Please enter participant number: ") Session = raw_input("Please enter session number: ") #create a window mywin = visual.Window([1300, 700], monitor="testMonitor", units="deg", color=[0.0, 0.0, 0.0])
#tree_deth = [12,14] tries = 1 with open("MNIST.db", 'rb') as input_: datas = pickle.load(input_) Y = asarray(datas["target"]).astype('int64') print numpy.unique(Y, return_counts=True) for i in xrange(len(Y)): Y[i] = Y[i] + 1 x = csr_matrix(preprocessing.normalize(datas["data"], copy=False, axis=0)) ns = rint(0, x.shape[0], size=x.shape[0]) x = x[ns] Y = Y[ns] x_train = x[:60000, :] x_validate = x[60000:, :] Y_train = Y[:60000] Y_validate = Y[60000:] x_sp_t = x_train x_sp_v = x_validate for gamma in [5500]: for d in tree_deth:
def trainVec(self, dim, window, C, batchSize, epoch, minEps=0.0001): model = NN3(len(self.trigrams), dim, len(self.trigrams), hType=0, oType=1, epsilon=0.001) decay = (model.epsilon - minEps) / (epoch - 1) batch = np.zeros((batchSize, len(self.trigrams))) label = np.zeros((batchSize, len(self.trigrams))) b = 0 l = 1 for itr in range(epoch): for sentence in self.corpus: for c in range(len(sentence)): s = max(0, c - window) e = min(len(sentence), c + window + 1) if e - s - 1 < C: continue if self.exist: ind = self.triList(sentence[c]) batch[b, ind] = 1 else: batch[b] = self.triHot(sentence[c]) visited = [c] for i in range(C): add = rint(s, e) while add in visited: add = rint(s, e) if self.exist: ind = self.triList(sentence[add]) label[b, ind] = 1 else: label[b] += self.triHot(sentence[add]) visited.append(add) b = (b + 1) % batchSize if b == 0: model.batch(batch, label) batch = np.zeros((batchSize, len(self.trigrams))) label = np.zeros((batchSize, len(self.trigrams))) print("Batch:", l) l = l + 1 model.epsilon = model.epsilon - decay if b != 0: model.batch(batch, label) print("Batch:", l) self.triVec = model.W
from numpy.random import randint as rint sdie = 1 our_dots = 0 some_rnd = 0 for i in range(100): root = Node(Board(0, 0, 1), None) print('[', end='') while not root.b.done(): if root.b.side == sdie: if len(root.sons) == 0: root.expand() n = len(root.sons) n = rint(n) root = root.sons[n] else: root.mcts(1000) root = root.sons[root.chose()] print(root.prob01(), end=', ') print(']') root.mcts(10) if root.true_eval == sdie: some_rnd += 1 else: our_dots += 1 sdie *= -1
def gen_dataset(nt=1000, prior=0.7, dataset='toy'): Xs, ys, Xtest, ytest = load_dataset(dataset=dataset) Xp = Xs[ys == 1] Xn = Xs[ys == -1] lXp = len(Xp) lXn = len(Xn) n1 = int(nt * (1 - prior * (1 - prior))) n2 = nt - n1 n1a = int(nt * prior * prior * prior) n1b = int(nt * prior * prior * (1 - prior)) n1c = int(nt * prior * (1 - prior) * (1 - prior)) n1d = n1 - n1a - 2 * (n1b + n1c) n2a = int(nt * prior * prior * (1 - prior)) n2b = n2 - n2a Xt1 = np.concatenate( (np.hstack( (Xp[rint(lXp, size=n1a)], Xp[rint(lXp, size=n1a)], Xp[rint(lXp, size=n1a)])), np.hstack((Xp[rint(lXp, size=n1b)], Xp[rint(lXp, size=n1b)], Xn[rint(lXn, size=n1b)])), np.hstack((Xp[rint(lXp, size=n1c)], Xn[rint(lXn, size=n1c)], Xn[rint(lXn, size=n1c)])), np.hstack((Xn[rint(lXn, size=n1b)], Xp[rint(lXp, size=n1b)], Xp[rint(lXp, size=n1b)])), np.hstack((Xn[rint(lXn, size=n1c)], Xn[rint(lXn, size=n1c)], Xp[rint(lXp, size=n1c)])), np.hstack((Xn[rint(lXn, size=n1d)], Xn[rint(lXn, size=n1d)], Xn[rint(lXn, size=n1d)])))) Xt2 = np.concatenate( (np.hstack( (Xp[rint(lXp, size=n2a)], Xn[rint(lXn, size=n2a)], Xp[rint(lXp, size=n2a)])), np.hstack((Xn[rint(lXn, size=n2b)], Xp[rint(lXp, size=n2b)], Xn[rint(lXn, size=n2b)])))) return Xt1.astype(np.float32), Xt2.astype(np.float32), Xtest.astype( np.float32), ytest[:, None]
def gen_knn_dataset(nt=1000, prior=0.7, dataset='toy'): Xs, ys, Xtest, ytest = load_dataset(dataset=dataset) Xs = Xs.reshape((len(Xs), -1)) Xtest = Xtest.reshape((len(Xtest), -1)) Xs_ids = np.array(range(len(Xs))) Xp_ids = Xs_ids[ys == 1] Xn_ids = Xs_ids[ys == -1] lXp = len(Xp_ids) lXn = len(Xn_ids) n1 = int(nt * (1 - prior * (1 - prior))) n2 = nt - n1 n1a = int(nt * prior * prior * prior) n1b = int(nt * prior * prior * (1 - prior)) n1c = int(nt * prior * (1 - prior) * (1 - prior)) n1d = n1 - n1a - 2 * (n1b + n1c) n2a = int(nt * prior * prior * (1 - prior)) n2b = n2 - n2a n1a1s = Xp_ids[rint(lXp, size=n1a)] n1a2s = Xp_ids[rint(lXp, size=n1a)] n1a3s = Xp_ids[rint(lXp, size=n1a)] n1b1s = Xp_ids[rint(lXp, size=n1b)] n1b2s = Xp_ids[rint(lXp, size=n1b)] n1b3s = Xn_ids[rint(lXn, size=n1b)] n1c1s = Xp_ids[rint(lXp, size=n1c)] n1c2s = Xn_ids[rint(lXn, size=n1c)] n1c3s = Xn_ids[rint(lXn, size=n1c)] n1d1s = Xn_ids[rint(lXn, size=n1b)] n1d2s = Xp_ids[rint(lXp, size=n1b)] n1d3s = Xp_ids[rint(lXp, size=n1b)] n1e1s = Xn_ids[rint(lXn, size=n1c)] n1e2s = Xn_ids[rint(lXn, size=n1c)] n1e3s = Xp_ids[rint(lXp, size=n1c)] n1f1s = Xn_ids[rint(lXn, size=n1d)] n1f2s = Xn_ids[rint(lXn, size=n1d)] n1f3s = Xn_ids[rint(lXn, size=n1d)] n2a1s = Xp_ids[rint(lXp, size=n2a)] n2a2s = Xp_ids[rint(lXp, size=n2a)] n2a3s = Xn_ids[rint(lXn, size=n2a)] n2b1s = Xn_ids[rint(lXn, size=n2b)] n2b2s = Xn_ids[rint(lXn, size=n2b)] n2b3s = Xp_ids[rint(lXp, size=n2b)] cons_a = np.concatenate( (n1a1s, n1b1s, n1c1s, n1d1s, n1e1s, n1f1s, n2a1s, n2b1s)) cons_b = np.concatenate( (n1a2s, n1b2s, n1c2s, n1d2s, n1e2s, n1f2s, n2a2s, n2b2s)) cons_c = np.concatenate( (n1a3s, n1b3s, n1c3s, n1d3s, n1e3s, n1f3s, n2a3s, n2b3s)) cons = (cons_a, cons_b, cons_a, cons_c) return Xs, cons, Xtest, ytest
def __init__(self, u, m, p = None, k = 40): if p is None: p = primes[np.searchsorted(primes, max(u, m))] self.p, self.u, self.m, self.k = p, u, m, k self.a = rint(1, p, k) self.b = rint(1, p, k)
def __init__(self, u, m , p = None): if p is None: p = primes[np.searchsorted(primes, max(u, m))] self.p, self.u, self.m = p, u, m self.a, self.b = rint(1, p, 2)