def randomly_delete_pages(self):
     for _ in range(R(1, 6)):
         if not self._expected_pages:
             break
         idx = R(0, len(self._expected_pages))
         del self._expected_pages[idx]
         del self.flipbook.pages[idx]
 def randomly_insert_images(self):
     if not self._expected_pages:
         return
     page_idx = R(0, len(self._expected_pages))
     page, expected_page = self.flipbook.pages[page_idx], self._expected_pages[page_idx]
     images = [self.images[R(0, len(self.images))] for _ in range(R(1,6))]
     image_idx = R(0, len(expected_page)) if expected_page else 0
     page[image_idx:image_idx] = images
     expected_page[image_idx:image_idx] = images
 def randomly_delete_images(self):
     if not self._expected_pages:
         return
     page_idx = R(0, len(self._expected_pages))
     page, expected_page = self.flipbook.pages[page_idx], self._expected_pages[page_idx]
     if not expected_page:
         return
     imcount = R(1, len(expected_page)+1)
     im_idx = R(0, len(expected_page))
     del page[im_idx:(im_idx+imcount)]
     del expected_page[im_idx:(im_idx+imcount)]
def give(dim, n, channels, out_size=10):
    if dim == 1:
        x = R(seed).random((ds_size, n, channels))
        x = x.reshape(x.shape[0], n, channels)
    else:
        x = R(seed).random((ds_size, n, n, channels))
        x = x.reshape(x.shape[0], n, n, channels)

    y = R(seed).randint(0, out_size, ds_size)
    y = tf.keras.utils.to_categorical(y, out_size)

    dataset = tf.data.Dataset.from_tensor_slices((x, y))

    return dataset
Exemple #5
0
def give(dim, n, channels, out_size=10):
    if dim == 1:
        x = R(seed).random((ds_size, channels, n))
        x = x.reshape(x.shape[0], channels, n)
    else:
        x = R(seed).random((ds_size, channels, n, n))
        x = x.reshape(x.shape[0], channels, n, n)

    y = R(seed).randint(0, out_size, ds_size)

    x = torch.from_numpy(x).type(torch.FloatTensor)
    y = torch.from_numpy(y).type(torch.LongTensor)

    train_data = torch.utils.data.TensorDataset(x, y)

    return train_data
 def do_random_operations(self):
     for _ in range(self.number_of_operations_spinner.value()):
         op, op_name = self._random_operations[R(0, len(self._random_operations))]
         op()
         if not self.check_state(op_name):
             break
 def randomly_merge_pages(self):
     if len(self._expected_pages) < 2:
         return
     idxs = sorted(numpy.random.choice([i for i in range(len(self._expected_pages))], min(R(2,6), len(self._expected_pages)), False))
     sm = self.flipbook.pages_view.selectionModel()
     m = self.flipbook.pages_view.model()
     sm.clearSelection()
     for idx in idxs:
         sm.select(m.index(idx, 0), Qt.QItemSelectionModel.Select)
     self.flipbook.merge_selected()
     target_idx = idxs.pop(0)
     expected_target_page = self._expected_pages[target_idx]
     for idx in idxs:
         expected_target_page.extend(self._expected_pages[idx])
     for idx in reversed(idxs):
         del self._expected_pages[idx]
 def randomly_insert_pages(self):
     for _ in range(R(1, 6)):
         page_idx = R(0, len(self._expected_pages)) if self._expected_pages else 0
         images = [self.images[R(0, len(self.images))] for _ in range(R(1,6))]
         self.flipbook.pages.insert(page_idx, images)
         self._expected_pages.insert(page_idx, images)
 def _test_plain_list_behavior_fidelity(cls, num_iterations=40, stuff_max_len=20, verbose=False):
     """For development and testing purposes, this function performs the same operations on a SignalingList
     and a plain list, and verifies that their contents remain identical.  The operations themselves are
     primarily random extended slicing operations, with the occassional extend call, randomly strided
     delete of a random range, and insert call with a random index and value.  Verbose output for any
     of the three occassional test operations is prepended with a * for visibility."""
     import numpy
     import numpy.random
     from numpy.random import randint as R
     sl = cls()
     l = []
     mb = lambda r: R(len(l)+1) if r else R(-2*len(l)-10, 2*len(l)+10)
     for iteration in range(num_iterations):
         stuff = list(R(1024, size=(R(stuff_max_len),)))
         rb, re = R(2, size=(2,))
         b, e = mb(rb), mb(re)
         if R(2) and b > e:
             b, e = e, b
         ol = list(l)
         func = R(100)
         if func < 96:
             l[b:e] = stuff
             sl[b:e] = stuff
             if l != sl:
                 raise RuntimeError('{}[{}:{}] = {}:\n{} !=\n{}'.format(ol, b, e, stuff, sl._list, l))
             if verbose:
                 print('{}[{}:{}] = {}'.format(ol, b, e, stuff))
         elif func < 97:
             s = (1 if R(3) else -1) * (1 if R(5) else R(5)+1)
             del l[b:e:s]
             del sl[b:e:s]
             if l != sl:
                 raise RuntimeError('del {}[{}:{}:{}]:\n{} !=\n{}'.format(ol, b, e, s, sl._list, l))
             if verbose:
                 print('* del {}[{}:{}:{}]'.format(ol, b, e, s))
         elif func < 98:
             l.extend(stuff)
             sl.extend(stuff)
             if l != sl:
                 raise RuntimeError('{}.extend({}):\n{} !=\n{}'.format(ol, stuff, sl._list, l))
             if verbose:
                 print('* {}.extend({})'.format(ol, stuff))
         else:
             stuff = R(1024)
             l.insert(b, stuff)
             sl.insert(b, stuff)
             if l != sl:
                 raise RuntimeError('{}.insert({}, {}):\n{} !=\n{}'.format(ol, b, stuff, sl._list, l))
             if verbose:
                 print('* {}.insert({}, {})'.format(ol, b, stuff))