def test_getter_signal_type(): """Test if attribute signal type is accessed correctly.""" signal = Signal([1, 2, 3], 44100, fft_norm='none') npt.assert_string_equal(signal.signal_type, 'energy') signal = Signal([1, 2, 3], 44100, fft_norm='rms') npt.assert_string_equal(signal.signal_type, 'power')
def test_pandas_const_df_prepend(): dta = longley.load_pandas().exog # regression test for #1025 dta['UNEMP'] /= dta['UNEMP'].std() dta = tools.add_constant(dta, prepend=True) assert_string_equal('const', dta.columns[0]) assert_equal(dta.var(0)[0], 0)
def test_fetch_bed(): import os filenames = [ "chrom22_subsample20_maf0.10.bed", "chrom22_subsample20_maf0.10.fam", "chrom22_subsample20_maf0.10.bim", ] with limix.file_example(filenames) as filepaths: folder = os.path.dirname(filepaths[0]) filepath = os.path.join(folder, "chrom22_subsample20_maf0.10") specs = [ f"{filepath}", f"{filepath}:bed:row=candidate,col=sample", f"{filepath}:bed:col=sample", f"{filepath}:bed", f"{filepath}", f"{filepath}:", f"{filepath}::", f"{filepath}:bed:", f"{filepath}::row=candidate", ] for spec in specs: G = fetch("genotype", spec, verbose=False) assert_string_equal(G.name, "genotype") assert_array_equal(G["sample"], _samples) assert_equal(G.shape, (274, 49008)) assert_array_equal(G.dims, ["sample", "candidate"])
def test_filter_bad_waveforms(): CC = dict() tr = obspy.Trace(header={'station': 'AAA', 'location': '00'}) st = Stream(traces=tr) code = '%s.%s' % (tr.stats.station, tr.stats.location) CC[code] = 0.1 tr = obspy.Trace(header={'station': 'BBB', 'location': '00'}) st.append(tr) code = '%s.%s' % (tr.stats.station, tr.stats.location) CC[code] = 0.8 tr = obspy.Trace(header={'station': 'CCC', 'location': '00'}) st.append(tr) code = '%s.%s' % (tr.stats.station, tr.stats.location) CC[code] = -0.9 tr = obspy.Trace(header={'station': 'DDD', 'location': '00'}) st.append(tr) code = '%s.%s' % (tr.stats.station, tr.stats.location) CC[code] = 0.6 st_filter = st.filter_bad_waveforms(CC=CC, CClim=0.6) npt.assert_equal(len(st_filter), 2) npt.assert_string_equal(str(st_filter[0].stats.station), 'BBB') npt.assert_string_equal(str(st_filter[1].stats.station), 'DDD')
def test_callback_terminates(self): # test that if the callback returns true, then the minimization halts bounds = [(0, 2), (0, 2)] expected_msg = 'callback function requested stop early by returning True' def callback_python_true(param, convergence=0.): return True result = differential_evolution(rosen, bounds, callback=callback_python_true) assert_string_equal(result.message, expected_msg) def callback_evaluates_true(param, convergence=0.): # DE should stop if bool(self.callback) is True return [10] result = differential_evolution(rosen, bounds, callback=callback_evaluates_true) assert_string_equal(result.message, expected_msg) def callback_evaluates_false(param, convergence=0.): return [] result = differential_evolution(rosen, bounds, callback=callback_evaluates_false) assert result.success
def test_copy(): x = tt.dmatrix('x') data = np.random.rand(5, 5) y = x.copy(name='y') f = theano.function([x], y) assert_equal(f(data), data) assert_string_equal(y.name, 'y')
def test_pandas_const_df_prepend(): dta = longley.load_pandas().exog # regression test for #1025 dta["UNEMP"] /= dta["UNEMP"].std() dta = tools.add_constant(dta, prepend=True) assert_string_equal("const", dta.columns[0]) assert_equal(dta.var(0)[0], 0)
def test_copy(): x = tt.dmatrix("x") data = np.random.rand(5, 5) y = x.copy(name="y") f = aesara.function([x], y) assert_equal(f(data), data) assert_string_equal(y.name, "y")
def test_build_from_halos(self): realization_fromhalos = Realization.from_halos( self.halos_cdm, self.lens_cosmo, self.kwargs_cdm, self.realization_cdm.apply_mass_sheet_correction, self.realization_cdm.rendering_classes, ) for halo_1, halo_2 in zip(realization_fromhalos.halos, self.realization_cdm.halos): npt.assert_equal(halo_1.x, halo_2.x) npt.assert_equal(halo_1.y, halo_2.y) npt.assert_equal(halo_1.mass, halo_2.mass) npt.assert_equal(halo_1.r3d, halo_2.r3d) npt.assert_string_equal(halo_1.mdef, halo_2.mdef) npt.assert_equal(halo_1.z, halo_2.z) npt.assert_equal(halo_1.is_subhalo, halo_2.is_subhalo) npt.assert_equal(halo_1.unique_tag, halo_2.unique_tag) npt.assert_equal(True, realization_fromhalos == self.realization_cdm) npt.assert_equal(realization_fromhalos.apply_mass_sheet_correction, self.realization_cdm.apply_mass_sheet_correction)
def test_single_halo(self): single_halo = SingleHalo(10**8, 0.5, -0.1, 'TNFW', 0.5, 0.5, 1.5) lens_model_list, redshift_array, kwargs_lens, kwargs_lensmodel = single_halo.lensing_quantities( ) npt.assert_equal(len(lens_model_list), 1) npt.assert_string_equal(lens_model_list[0], 'TNFW')
def test_pandas_const_series_prepend(self): # Check that the constant is added in the expected column location dta = longley.load_pandas() series = dta.exog['GNP'] series = tools.add_constant(series, prepend=True) assert_string_equal('const', series.columns[0]) assert_equal(series.var(0)[0], 0)
def test_gate_translation(gate: Tuple[Any, str]): """Test gate operations with QASM interface""" qasm_operation = qasm_call_operation(operation=gate[0], number_qubits=2) if gate[1] is None: assert qasm_operation is None else: npt.assert_string_equal(qasm_operation, gate[1])
def test_profile_load(self): profile_args = {'amp': 1, 'sigma': 1, 'center_x': 0, 'center_y': 0} single_halo = SingleHalo(1e8, 0.5, 0.5, 'GAUSSIAN_KAPPA', 0.5, 0.5, 1.5, None, True, profile_args, None) lens_model_list, redshift_array, kwargs_lens, numerical_interp = single_halo.\ lensing_quantities(add_mass_sheet_correction=False) npt.assert_string_equal(lens_model_list[0], 'GAUSSIAN_KAPPA')
def test_getter_signal_type(sine, sine_rms): """Test if attribute signal type is accessed correctly.""" signal = Signal(sine.time, sine.sampling_rate, fft_norm=sine.fft_norm) npt.assert_string_equal(signal.signal_type, 'energy') signal = Signal(sine_rms.time, sine_rms.sampling_rate, fft_norm=sine_rms.fft_norm) npt.assert_string_equal(signal.signal_type, 'power')
def test_enm_names(): cg_universe = enm.Enm(NCSC) testing.assert_string_equal( native_str(cg_universe.atoms[0].name), native_str("A001"), ) testing.assert_string_equal( native_str(cg_universe.residues[0].resname), native_str("A001"), )
def test_load(): dummy_file_name = 'dummy.txt' dummy_file_contents = 'This is some dummy text.' dummy_file = open(os.path.join(fs.SHADERS_DIR, dummy_file_name), 'w') dummy_file.write(dummy_file_contents) dummy_file.close() npt.assert_string_equal(fs.load(dummy_file_name), dummy_file_contents) os.remove(os.path.join(fs.SHADERS_DIR, dummy_file_name))
def test_callback_terminates(self): # test that if the callback returns true, then the minimization halts bounds = [(0, 2), (0, 2)] def callback(param, convergence=0.): return True result = differential_evolution(rosen, bounds, callback=callback) assert_string_equal(result.message, 'callback function requested stop early ' 'by returning True')
def test_numpy_version_attribute(self): # Check that self.module has an attribute named "__f2py_numpy_version__" assert_(hasattr(self.module, "__f2py_numpy_version__"), msg="Fortran module does not have __f2py_numpy_version__") # Check that the attribute __f2py_numpy_version__ is a string assert_(isinstance(self.module.__f2py_numpy_version__, str), msg="__f2py_numpy_version__ is not a string") # Check that __f2py_numpy_version__ has the value numpy.__version__ assert_string_equal(np.__version__, self.module.__f2py_numpy_version__)
def test_callback_terminates(self): # test that if the callback returns true, then the minimization halts bounds = [(0, 2), (0, 2)] def callback(param, convergence=0.): return True result = differential_evolution(rosen, bounds, callback=callback) assert_string_equal( result.message, 'callback function requested stop early ' 'by returning True')
def test_profile_load(self): # test cored composite profile profile_args = {'log10_m_uldm': -22, 'uldm_plaw': 1/3, 'scale_nfw':False} single_halo = SingleHalo(1e8, 0.5, 0.5, 'ULDM', 0.5, 0.5, 1.5, None, True, profile_args, None) lens_model_list, redshift_array, kwargs_lens, numerical_interp = single_halo.\ lensing_quantities(add_mass_sheet_correction=False) npt.assert_string_equal(lens_model_list[1], 'ULDM') npt.assert_string_equal(lens_model_list[0], 'CNFW') npt.assert_equal(True, len(kwargs_lens)==2) npt.assert_equal(True, len(redshift_array)==2)
def testQFTGateSequenceWithSwapping(self): """ qft: Inspect swap gates added to gate sequences if swapping is enabled. """ for N in range(1, 6): circuit = qft_gate_sequence(N, swapping=True) phases = int(N * (N + 1) / 2) swaps = int(N // 2) assert_equal(len(circuit.gates), phases + swaps) for i in range(phases, phases + swaps): assert_string_equal(circuit.gates[i].name, "SWAP")
def test_load_text(): with InTemporaryDirectory() as tdir: test_file_name = 'test.txt' # Test file does not exist npt.assert_raises(IOError, load_text, test_file_name) # Saving file with content test_file_contents = 'This is some test text.' test_fname = os.path.join(tdir, test_file_name) test_file = open(test_fname, 'w') test_file.write(test_file_contents) test_file.close() npt.assert_string_equal(load_text(test_fname), test_file_contents)
def test_load_shader(): fname_test = 'test.text' # Test invalid file extension npt.assert_raises(IOError, load_shader, fname_test) with InTemporaryDirectory() as tdir: fname_test = 'test.frag' fname_test = os.path.join(tdir, fname_test) str_test = 'Test1' test_file = open(fname_test, 'w') test_file.write(str_test) test_file.close() npt.assert_string_equal(load_shader(fname_test), str_test)
def test_core_collapsed_halo(self): single_halo = SingleHalo(10**8, 0.5, -0.1, 'TNFW', 0.5, 0.5, 1.5, subhalo_flag=True) ext = RealizationExtensions(single_halo) new = ext.add_core_collapsed_halos([0], log_slope_halo=3., x_core_halo=0.05) lens_model_list = new.lensing_quantities()[0] npt.assert_string_equal(lens_model_list[0], 'SPL_CORE')
def test_lenstronomy_ID(self): ID = self.fieldhalo.lenstronomy_ID npt.assert_string_equal(ID[0], 'CNFW') npt.assert_string_equal(ID[1], 'ULDM') ID = self.subhalo.lenstronomy_ID npt.assert_string_equal(ID[0], 'CNFW') npt.assert_string_equal(ID[1], 'ULDM')
def test_callback_terminates(self): # test that if the callback returns true, then the minimization halts bounds = [(0, 2), (0, 2)] def callback(param, convergence=0.): # This is a very round-about way to # check this property, but it helps # to ensure the code is tested like # it will be used: ie, with a numpy # bool (which, notably, will not be # the same identity so `is` cannot # be used. return (np.array([1]) == 1).astype(bool)[0] result = differential_evolution(rosen, bounds, callback=callback) assert_string_equal(result.message, 'callback function requested stop early ' 'by returning True')
def test_dipy_home(): test_path = 'TEST_PATH' if 'DIPY_HOME' in os.environ: old_home = os.environ['DIPY_HOME'] del os.environ['DIPY_HOME'] else: old_home = None reload(fetcher) npt.assert_string_equal(fetcher.dipy_home, op.join(os.path.expanduser('~'), '.dipy')) os.environ['DIPY_HOME'] = test_path reload(fetcher) npt.assert_string_equal(fetcher.dipy_home, test_path) # return to previous state if old_home: os.environ['DIPY_HOME'] = old_home
def test_fetch_csv(): with limix.file_example("expr.csv") as filepath: spec = f"{filepath}:csv:row=trait,trait[gene1]" y = fetch("trait", spec, verbose=False) assert_string_equal(y.name, "trait") assert_array_equal(y["sample"], _samples) assert_equal(y.shape, (274, 1)) assert_allclose(y.values[:2, 0], [-3.752_345_147_31, -0.421_128_991_488]) assert_array_equal(y.coords, ["trait", "sample"]) spec = f"{filepath}:csv:row=trait,trait[gene11]" y = fetch("trait", spec, verbose=False) assert_string_equal(y.name, "trait") assert_array_equal(y["sample"], _samples) assert_equal(y.shape, (274, 1)) assert_allclose(y.values[:2, 0], [0.798_312_717_19, 0.237_496_587_19]) spec = f"{filepath}:csv:row=trait" y = fetch("trait", spec, verbose=False) assert_string_equal(y.name, "trait") assert_array_equal(y["sample"], _samples) assert_equal(y.shape, (274, 11)) spec = f"{filepath}:csv:row=trait,col=sample" y = fetch("trait", spec, verbose=False) assert_equal(y.shape, (274, 11)) assert_equal(y.dims, ("sample", "trait")) spec = f"{filepath}:csv:row=sample,col=trait" y = fetch("trait", spec, verbose=False) assert_equal(y.shape, (11, 274)) assert_equal(y.dims, ("sample", "trait")) spec = f"{filepath}:csv:" y = fetch("trait", spec, verbose=False) spec = f"{filepath}:csv" y = fetch("trait", spec, verbose=False) spec = f"{filepath}:csv:row=samples" with pytest.raises(ValueError): y = fetch("trait", spec, verbose=False) spec = "wrong_filepath:csv:row=sample" with pytest.raises(FileNotFoundError): y = fetch("trait", spec, verbose=False) spec = f"{filepath}:csv:row=sample,col=trait" with pytest.raises(ValueError): y = fetch("traits", spec, verbose=False) spec = f"{filepath}:csvs:row=sample,col=trait" with pytest.raises(ValueError): y = fetch("trait", spec, verbose=False)
def test_get_synthetics(): # Try to load 3 stations, out of which 2 are in range for P db = instaseis.open_db('syngine://prem_a_20s') cat = obspy.read_events('./stfinv/data/virginia.xml') st = read('./stfinv/data/dis.II.BFO.00.BHZ') st += read('./stfinv/data/dis.GE.DAG..BHZ') st += read('./stfinv/data/dis.G.CRZF.00.BHZ') st_data, st_syn = st.get_synthetics(db=db, origin=cat[0].origins[0], out_dir='/tmp') npt.assert_equal(len(st_data), 2) npt.assert_equal(len(st_syn), 12) for istat in range(0, 2): channels = ['MPP', 'MRP', 'MRR', 'MRT', 'MTP', 'MTT'] for channel in channels: st_test = st_syn.select(station=st_data[istat].stats.station, network=st_data[istat].stats.network, location=st_data[istat].stats.location, channel=channel) npt.assert_equal(len(st_test), 1) for tr in st_syn[istat * 6:(istat + 1) * 6]: npt.assert_string_equal(str(tr.stats.station), str(st_data[istat].stats.station)) npt.assert_string_equal(str(tr.stats.location), str(st_data[istat].stats.location)) npt.assert_string_equal(str(tr.stats.network), str(st_data[istat].stats.network)) npt.assert_equal(tr.stats.npts, st_data[istat].stats.npts) npt.assert_allclose(tr.stats.delta, st_data[istat].stats.delta) npt.assert_allclose(float(tr.stats.starttime), float(st_data[istat].stats.starttime))
def test_simple(self): assert_string_equal("hello", "hello") assert_string_equal("hello\nmultiline", "hello\nmultiline") try: assert_string_equal("foo\nbar", "hello\nbar") except AssertionError as exc: assert_equal(str(exc), "Differences in strings:\n- foo\n+ hello") else: raise AssertionError("exception not raised") self.assertRaises(AssertionError, lambda: assert_string_equal("foo", "hello"))
def test_obj_src(): string_result = scrape.obj_src(eat_porridge) initial_txt_should_be = str( 'def eat_porridge(this_sucks, temperature, wtf):') initial_txt_actual = str(string_result.split('\n')[0]) assert_string_equal(initial_txt_actual, initial_txt_should_be)
def test_obj_src(): string_result = wrap_lib.obj_src(interp) initial_txt_should_be = str('def interp(x, xp, fp, left=None, right=None)') initial_txt_actual = string_result[0:44] assert_string_equal(initial_txt_actual, initial_txt_should_be)
def test_pandas_const_df_prepend(): dta = longley.load_pandas().exog dta = tools.add_constant(dta, prepend=True) assert_string_equal('const', dta.columns[0]) assert_equal(dta.var(0)[0], 0)
def test_infer_freq(): from pandas import DateRange d1 = datetime(2008, 12, 31) d2 = datetime(2012, 9, 30) b = DateRange(d1, d2, offset=_freq_to_pandas['B']).values d = DateRange(d1, d2, offset=_freq_to_pandas['D']).values w = DateRange(d1, d2, offset=_freq_to_pandas['W']).values m = DateRange(d1, d2, offset=_freq_to_pandas['M']).values a = DateRange(d1, d2, offset=_freq_to_pandas['A']).values q = DateRange(d1, d2, offset=_freq_to_pandas['Q']).values npt.assert_string_equal(_infer_freq(b), 'B') npt.assert_string_equal(_infer_freq(d), 'D') npt.assert_string_equal(_infer_freq(w), 'W') npt.assert_string_equal(_infer_freq(m), 'M') npt.assert_string_equal(_infer_freq(a), 'A') npt.assert_string_equal(_infer_freq(q), 'Q') npt.assert_string_equal(_infer_freq(b[2:4]), 'B') npt.assert_string_equal(_infer_freq(b[:2]), 'D') npt.assert_string_equal(_infer_freq(d[:2]), 'D') npt.assert_string_equal(_infer_freq(w[:2]), 'W') npt.assert_string_equal(_infer_freq(m[:2]), 'M') npt.assert_string_equal(_infer_freq(a[:2]), 'A') npt.assert_string_equal(_infer_freq(q[:2]), 'Q')
def test_pandas_const_series_prepend(): dta = longley.load_pandas() series = dta.exog['GNP'] series = tools.add_constant(series, prepend=True) assert_string_equal('const', series.columns[0]) assert_equal(series.var(0)[0], 0)
def test_pandas_const_df(): dta = longley.load_pandas().exog dta = tools.add_constant(dta, prepend=False) assert_string_equal('const', dta.columns[-1]) assert_equal(dta.var(0)[-1], 0)
def test_get_data_path(): fn = 'parrot' path = os.path.dirname(os.path.abspath(__file__)) data_path = os.path.join(path, 'data', fn) data_path_2 = get_data_path(fn) npt.assert_string_equal(data_path_2, data_path)
def test_regex(self): assert_string_equal("a+*b", "a+*b") assert_raises(AssertionError, lambda: assert_string_equal("aaa", "a+b"))
def test_pandas_const_df(): dta = longley.load_pandas().exog dta = tools.add_constant(dta, prepend=False) assert_string_equal("const", dta.columns[-1]) assert_equal(dta.var(0)[-1], 0)
def test_pandas_const_series_prepend(): dta = longley.load_pandas() series = dta.exog["GNP"] series = tools.add_constant(series, prepend=True) assert_string_equal("const", series.columns[0]) assert_equal(series.var(0)[0], 0)
def test_name(bj84_pc): assert_string_equal(bj84_pc.name, 'Boore & Joyner (1984)')
def test_abbrev(bj84_pc): assert_string_equal(bj84_pc.abbrev, 'BJ84')
def test_pandas_const_series(): dta = longley.load_pandas() series = dta.exog['GNP'] series = tools.add_constant(series, prepend=False) assert_string_equal('const', series.columns[1]) assert_equal(series.var(0)[1], 0)