Exemple #1
0
def regularized_correlation(size, dot_product, rating_sum, \
            rating2sum, rating_norm_squared, rating2_norm_squared,
            virtual_cont, prior_correlation):
    '''
    The Regularized Correlation between two vectors A, B
    RegularizedCorrelation = w * ActualCorrelation + (1 - w) * PriorCorrelation
        where w = # actualPairs / (# actualPairs + # virtualPairs).
    '''
    unregularizedCorrelation = correlation(size, dot_product, rating_sum, \
            rating2sum, rating_norm_squared, rating2_norm_squared)

    w = size / float(size + virtual_cont)

    return w * unregularizedCorrelation + (1.0 - w)
Exemple #2
0
    def calculate_similarity(self, pair_key, lines):
        '''
        Sum components of each corating pair across all users who rated both
        item x and item y, then calculate pairwise pearson similarity and
        corating counts.  The similarities are normalized to the [0,1] scale
        because we do a numerical sort.
        19,21   0.4,2
        21,19   0.4,2
        19,70   0.6,1
        70,19   0.6,1
        21,70   0.1,1
        70,21   0.1,1
        '''
        sum_xx, sum_xy, sum_yy, sum_x, sum_y, n = (0.0, 0.0, 0.0, 0.0, 0.0, 0)
        item_pair, co_ratings = pair_key, lines
        item_xname, item_yname = item_pair
        items_x = []
        items_y = []
        for item_x, item_y in lines:
            sum_xx += item_x * item_x
            sum_yy += item_y * item_y
            sum_xy += item_x * item_y
            sum_y += item_y
            sum_x += item_x
            n += 1
       #     items_x.append(item_x)
       #     items_y.append(item_y)

        corr_sim = correlation(n, sum_xy, sum_x, \
                sum_y, sum_xx, sum_yy)
        #corr_sim = correlation(items_x, items_y)
    
        reg_corr_sim = regularized_correlation(n, sum_xy, sum_x, \
                sum_y, sum_xx, sum_yy, PRIOR_COUNT, PRIOR_CORRELATION)

        cos_sim = cosine(sum_xy, sqrt(sum_xx), sqrt(sum_yy))

        jaccard_sim = 0.0

        yield (item_xname, item_yname), (corr_sim, \
                cos_sim, reg_corr_sim, jaccard_sim, n)