Exemple #1
0
def vec_dihedral(v1,v2,v3,v4):
    '''
* Usage
    v1 = np.array([0,0,0])
    v2 = np.array([1,1,1])  # 
    v3 = np.array([2,2,2])  # The v2--v3 bond is rotated around
    v4 = np.array([3,3,3])
    phi = vec_dihedral(v1,v2,v3)
* Input
    v1,v2,v3 - 1D Numpy array
    Vectors must have the same number of elements
* Output
    Floating point number which is the angle in degrees
* Description
    v1,v2,v3,v4 refers to the vector of Cartesian coordinates describing each point
    vec1, vec2, etc... refers to the vector between 2 points, e.g, vec1 = v1-v2
    '''
    a1 = v2-v1
    a2 = v3-v2
    a3 = v4-v3

    v1 = np.cross(a1, a2)
    v2 = np.cross(a2, a3)
    
    v1 = v1 / (v1 * v1).sum()**0.5
    v2 = v2 / (v2 * v2).sum()**0.5

    porm = np.sign((v1 * a3).sum())
    rad = np.arccos((v1*v2).sum() / ((v1**2).sum() * (v2**2).sum())**0.5)
    angle = porm * rad
    if np.isnan(angle):
        angle = 1.0
    return math.degrees(angle)
Exemple #2
0
        def getDihedralAngle(self,dihedral):
		"""Calculates the dihedral angle of a given dihedral.
                
                Parameters
                ----------
                dihedral : Dihedral 
                        Dihedral Object that one wishes to calculate the dihedral angle of.

		Returns
		-------
		float
			The current dihedral angle of the Dihedral object
		"""
                atom1 = self.getAtomByID(dihedral.atom1)
                atom2 = self.getAtomByID(dihedral.atom2)
                atom3 = self.getAtomByID(dihedral.atom3)
                atom4 = self.getAtomByID(dihedral.atom4)
		b1 = atom2.position-atom1.position
		b2 = atom3.position-atom2.position
		b3 = atom4.position-atom3.position
		b2norm = b2/np.linalg.norm(b2)
		n1 = np.cross(b1,b2)/np.linalg.norm(np.cross(b1,b2))
		n2 = np.cross(b2,b3)/np.linalg.norm(np.cross(b2,b3))
		m1 = np.cross(n1,n2)
		angle = atan2(np.dot(m1,b2norm),np.dot(n1,n2))	
                angle=angle%(2*pi)
                return angle
Exemple #3
0
        def get_new_cell(self):
            """Returns new basis vectors"""
            a = np.sqrt(self.a)
            b = np.sqrt(self.b)
            c = np.sqrt(self.c)

            ad = self.atoms.cell[0] / np.linalg.norm(self.atoms.cell[0])

            Z = np.cross(self.atoms.cell[0], self.atoms.cell[1])
            Z /= np.linalg.norm(Z)
            X = ad - np.dot(ad, Z) * Z
            X /= np.linalg.norm(X)
            Y = np.cross(Z, X)

            alpha = np.arccos(self.x / (2 * b * c))
            beta = np.arccos(self.y / (2 * a * c))
            gamma = np.arccos(self.z / (2 * a * b))

            va = a * np.array([1, 0, 0])
            vb = b * np.array([np.cos(gamma), np.sin(gamma), 0])
            cx = np.cos(beta)
            cy = (np.cos(alpha) - np.cos(beta) * np.cos(gamma)) \
                / np.sin(gamma)
            cz = np.sqrt(1. - cx * cx - cy * cy)
            vc = c * np.array([cx, cy, cz])

            abc = np.vstack((va, vb, vc))
            T = np.vstack((X, Y, Z))
            return np.dot(abc, T)
 def get_orientation_from_lines(self, v0, v1):
     """ 
     Takes in two vectors, v0 and v1, (which are KNOWN to be in the same plane) and finds 
     the normal, and creates a rotation matrix from v0, v1, and the normal; then converts this 
     rotation matrix to a quaternion 
     """
     v0, v1 = np.array(v0), np.array(v1)
     v0 = v0 / np.linalg.norm(v0) 
     v1 = v1 / np.linalg.norm(v1) 
     n = np.cross(v0, v1)
     parallel = average_vectors(v0, v1)
     parallel = parallel / np.linalg.norm(parallel)
     third = np.cross(n, parallel)
     third = third / np.linalg.norm(third)
     #n = n / np.linalg.norm(n)
     #v1 = np.cross(n, v0)
     #v1 = v1 / np.linalg.norm(v1)
     #rotMat = np.vstack((n, v1, v0)).T
     rotMat = np.vstack((parallel, third, n)).T
     matrix = rotMat
     tbRot = tfx.tb_angles(matrix).matrix        
     #tbRot = self.rotate(-90, "yaw", tbRot)    #FIXME: get correct yaw pitch roll values
     #tbRot = self.rotate(60, "pitch", tbRot)
     tbRot = self.rotate(180, "roll", tbRot)
     quat = tfx.tb_angles(tbRot).quaternion
     return list(quat)
def fitDrillBarrel ( drillPoints, forwardDirection, plane_origin, plane_normal):
    ''' Given a point cloud which ONLY contains points from a barrell drill, standing upright
        and the equations of a table its resting on, and the general direction of the robot
        Fit a barrell drill
     '''

    if not drillPoints.GetNumberOfPoints():
        return

    vis.updatePolyData(drillPoints, 'drill cluster', parent=getDebugFolder(), visible=False)
    drillBarrelPoints = thresholdPoints(drillPoints, 'dist_to_plane', [0.177, 0.30])

    if not drillBarrelPoints.GetNumberOfPoints():
        return


    # fit line to drill barrel points
    linePoint, lineDirection, _ = applyLineFit(drillBarrelPoints, distanceThreshold=0.5)

    if np.dot(lineDirection, forwardDirection) < 0:
        lineDirection = -lineDirection

    vis.updatePolyData(drillBarrelPoints, 'drill barrel points', parent=getDebugFolder(), visible=False)


    pts = vtkNumpy.getNumpyFromVtk(drillBarrelPoints, 'Points')

    dists = np.dot(pts-linePoint, lineDirection)

    p1 = linePoint + lineDirection*np.min(dists)
    p2 = linePoint + lineDirection*np.max(dists)

    p1 = projectPointToPlane(p1, plane_origin, plane_normal)
    p2 = projectPointToPlane(p2, plane_origin, plane_normal)


    d = DebugData()
    d.addSphere(p1, radius=0.01)
    d.addSphere(p2, radius=0.01)
    d.addLine(p1, p2)
    vis.updatePolyData(d.getPolyData(), 'drill debug points', color=[0,1,0], parent=getDebugFolder(), visible=False)


    drillToBasePoint = np.array([-0.07,  0.0  , -0.12])

    zaxis = plane_normal
    xaxis = lineDirection
    xaxis /= np.linalg.norm(xaxis)
    yaxis = np.cross(zaxis, xaxis)
    yaxis /= np.linalg.norm(yaxis)
    xaxis = np.cross(yaxis, zaxis)
    xaxis /= np.linalg.norm(xaxis)

    t = getTransformFromAxes(xaxis, yaxis, zaxis)
    t.PreMultiply()
    t.Translate(-drillToBasePoint)
    t.PostMultiply()
    t.Translate(p1)

    return t
Exemple #6
0
    def __init__(self, joint):
        GenericObject.__init__(self)
        children_joints = joint.get_children_joints()
        for child in children_joints:
            child.init_local_transformation()
            p = child.localTransformation[:3,3]
            translation = p*0.5
            height = numpy.linalg.norm(p)
            if height < 1e-6:
                continue
            radius = 0.005
            new_y = p/numpy.linalg.norm(p)
            new_x = numpy.cross(new_y, numpy.array([1,0,0]))
            new_x_norm = numpy.linalg.norm(new_x)
            # if new_y is colinear to numpy.array([1,0,0])
            # recompute new_x
            if new_x_norm < 1e-6:
               new_x = numpy.cross(new_y, numpy.array([0,1,0]))
               new_x_norm = numpy.linalg.norm(new_x)
            new_x /= new_x_norm
            new_z = numpy.cross(new_x, new_y)
            trans_T = numpy.eye(4)
            trans_T[:3,0] = new_x
            trans_T[:3,1] = new_y
            trans_T[:3,2] = new_z

            try:
                angle, direc, point = tf.rotation_from_matrix(trans_T)
            except:
                logger.exception("Error in creating link {0}-{1}".format(joint.name,
                                                                         child.name))
            else:
                rotation = [direc[0], direc[1], direc[2], angle]
                link = Shape()
                link.enabled = False

                link.appearance.material.diffuseColor = [0,0.5,1]
                link.geometry = Cylinder()
                link.geometry.height = height
                link.geometry.radius = radius
                link.rotation = rotation
                link.translation = translation
                link.init()
                self.add_child(link)

        motor = Shape()
        motor.enabled = False
        self.add_child(motor)
        motor.appearance.material.diffuseColor = [1,0,0]
        if joint.jointAxis in ["X","x","Y","y","z","Z"]:
            motor.geometry = Cylinder()
            motor.geometry.height = 0.005
            motor.geometry.radius = 0.02
            if joint.jointAxis in ["X","x"]:
                motor.rotation = [0, 0, 1, 1.5708]
            elif joint.jointAxis in ["Z","z"]:
                motor.rotation = [0, 1, 0, 1.5708]
        else:
            motor.geometry = Sphere()
            motor.geometry.radius = 0.02
Exemple #7
0
def rotation_matrix(a1, a2, b1, b2):
    """Returns a rotation matrix that rotates the vectors *a1* in the
    direction of *a2* and *b1* in the direction of *b2*.

    In the case that the angle between *a2* and *b2* is not the same
    as between *a1* and *b1*, a proper rotation matrix will anyway be
    constructed by first rotate *b2* in the *b1*, *b2* plane.
    """
    a1 = np.asarray(a1, dtype=float) / np.linalg.norm(a1)
    b1 = np.asarray(b1, dtype=float) / np.linalg.norm(b1)
    c1 = np.cross(a1, b1)
    c1 /= np.linalg.norm(c1)      # clean out rounding errors...

    a2 = np.asarray(a2, dtype=float) / np.linalg.norm(a2)
    b2 = np.asarray(b2, dtype=float) / np.linalg.norm(b2)
    c2 = np.cross(a2, b2)
    c2 /= np.linalg.norm(c2)      # clean out rounding errors...

    # Calculate rotated *b2*
    theta = np.arccos(np.dot(a2, b2)) - np.arccos(np.dot(a1, b1))
    b3 = np.sin(theta) * a2 + np.cos(theta) * b2
    b3 /= np.linalg.norm(b3)      # clean out rounding errors...

    A1 = np.array([a1, b1, c1])
    A2 = np.array([a2, b3, c2])
    R = np.linalg.solve(A1, A2).T
    return R
Exemple #8
0
    def test_A(self):
        cid0 = CORD2R()
        Lx = 2.
        Ly = 0.
        Lz = 3.
        Fy = 1.
        origin = array([-Lx, 0., -Lz])
        z_axis = origin + array([0., 0., 1.])
        xz_plane = origin + array([1., 0., 1.])
        rid = 0
        data = [1, rid] + list(origin) + list(z_axis) + list(xz_plane)

        Fxyz = [0., -Fy, 0.]
        Mxyz = [0., 0., 0.]
        cid_new = CORD2R(data=data)
        model = None

        Fxyz_local, Mxyz_local = TransformLoadWRT(Fxyz, Mxyz, cid0, cid_new,
                                                  model, is_cid_int=False)

        r = array([Lx, Ly, Lz])
        F = array([0., -Fy, 0.])
        M = cross(r, F)
        self.assertTrue(array_equal(Fxyz_local, F)), "expected=%s actual=%s" % (F, Fxyz_local)
        self.assertTrue(array_equal(Mxyz_local, cross(r, F))), "expected=%s actual=%s" % (M, Mxyz_local)
Exemple #9
0
def SegIntersect(A1, A2, B1, B2):
    """The function returns the intersection or the points of closest approach if lines are skewed.
    If lines are parallel, NaN is returned.
    INPUT:
        A1  -float(3,n), [x,y,z;nsegments] cordinates of 1st point(s) of 1st segment(s)
        A2  -float(3,n), [x,y,z;nsegments] cordinates of 2nd point(s) of 1st segment(s)
        B1  -float(3,n), [x,y,z;nsegments] cordinates of 1st point(s) of 2nd segment(s)
        B2  -float(3,n), [x,y,z;nsegments] cordinates of 2nd point(s) of 2nd segment(s)
    OUTPUT:
        A0  -float(3,n), [x,y,z;nsegments] coordinates of intersection point (=B0) or closet point to 2nd line on 1st segment,
        B0  -float(3,n), [x,y,z;nsegments] coordinates of intersection point (=A0) or closet point to 1st line on 2nd segment,
        OR  -NaN
    """

    # reshape A1..B2 in case they have 1 dimension only
    A1 = A1.reshape(3, -1)
    A2 = A2.reshape(3, -1)
    B1 = B1.reshape(3, -1)
    B2 = B2.reshape(3, -1)

    vec = np.cross(A2 - A1, B2 - B1, 0, 0, 0)
    nA = np.sum(np.cross(B2 - B1, A1 - B1, 0, 0, 0) * vec, axis=0) * np.ones(A1.shape[1])
    nB = np.sum(np.cross(A2 - A1, A1 - B1, 0, 0, 0) * vec, axis=0) * np.ones(A1.shape[1])
    d = np.sum(vec ** 2, axis=0) * np.ones(A1.shape[1])

    A0 = np.ones(A1.shape) * np.NaN
    B0 = A0.copy()
    idx = np.nonzero(d)[0]
    A0[:, idx] = A1[:, idx] + (nA[idx] / d[idx]) * (A2[:, idx] - A1[:, idx])
    B0[:, idx] = B1[:, idx] + (nB[idx] / d[idx]) * (B2[:, idx] - B1[:, idx])

    return A0, B0
Exemple #10
0
def get_double_alignment_matrix(vp1, vp2):
    '''
    Align two sets of two vectors onto each other.

    @param vp1: A pair of two vectors.
    @param vp2: Another pair of two vectors.
    '''
    angle1 = vec_angle(vp1[0], vp1[1])
    angle2 = vec_angle(vp2[0], vp2[1])

    nt.assert_allclose(angle1, angle2, rtol=1e-7, atol=1e-7)

    # Align the first two segments
    mat1 = get_alignment_matrix(vp1[0], vp2[0])

    # See where the second segment of the second set ends up
    # after the first alignment
    new_vp2_1 = np.dot(mat1, vp2[1])

    comp1 = np.cross(vp1[1], vp1[0])
    #comp1 = np.cross(vp1[0], vp1[1])
    comp2 = np.cross(vp1[0], comp1) # should be along the plane of vp1[0] and vp1[1]

    basis1 = create_orthonormal_basis(normalize(vp1[0]), normalize(comp2))
    rej2 = change_basis(new_vp2_1, basis1, standard_basis)

    angle = m.atan2(rej2[2], rej2[1])

    mat2 = rotation_matrix(vp1[0], angle)

    #return np.dot(mat1, mat2)
    return np.dot(mat2, mat1)
Exemple #11
0
def build(lattice, basis, layers, tol):
    surf = lattice.copy()
    scaled = solve(basis.T, surf.get_scaled_positions().T).T
    scaled -= np.floor(scaled + tol)
    surf.set_scaled_positions(scaled)
    surf.set_cell(np.dot(basis, surf.cell), scale_atoms=True)
    surf *= (1, 1, layers)

    a1, a2, a3 = surf.cell
    surf.set_cell([a1, a2,
                   np.cross(a1, a2) * np.dot(a3, np.cross(a1, a2)) /
                   norm(np.cross(a1, a2))**2])
    
    # Change unit cell to have the x-axis parallel with a surface vector
    # and z perpendicular to the surface:
    a1, a2, a3 = surf.cell
    surf.set_cell([(norm(a1), 0, 0),
                   (np.dot(a1, a2) / norm(a1),
                    np.sqrt(norm(a2)**2 - (np.dot(a1, a2) / norm(a1))**2), 0),
                   (0, 0, norm(a3))],
                  scale_atoms=True)

    surf.pbc = (True, True, False)

    # Move atoms into the unit cell:
    scaled = surf.get_scaled_positions()
    scaled[:, :2] %= 1
    surf.set_scaled_positions(scaled)

    return surf
 def getCurvePoints(self,P0,P1,P2,R,n=20):
     """Generates a curve. P0,P1 and P2 define a corner and R defines the radius of the
     tangential circle element. n gives the number of point to approximate the curve.
     P1 is the corner itself and P0 and P2 give the tangents.
     """
     P0=np.array(P0)
     P1=np.array(P1)
     P2=np.array(P2)
     o1=(P0-P1)/np.sqrt(np.dot(P0-P1,P0-P1))
     o2=(P2-P1)/np.sqrt(np.dot(P2-P1,P2-P1))
     if np.arcsin(np.cross(o1,o2)) > 0:
         a=1.
         b=-1.
     else:
         a=-1.
         b=1.
     
     v1=R*np.dot(np.array([[0.,b],[a,0.]]),o1)
     v2=R*np.dot(np.array([[0.,a],[b,0.]]),o2)
     dv=v2-v1
     a=np.array([[o1[0],-o2[0]],[o1[1],-o2[1]]])
     b=dv
     x=np.linalg.solve(a,b)
     circleCenter= P1+x[0]*o1+v1
     angle = np.arcsin(np.cross(v2/R,v1/R))
     points=[]
     for i in range(n+1):
         x=-i*angle/n
         rot = np.array([[np.cos(x),-np.sin(x)],
                          [np.sin(x),np.cos(x)]])
         points.append(circleCenter+np.dot(rot,-v1))
     return points
Exemple #13
0
def lookAt(eye, center, up):
    ret = numpy.eye(4, dtype=numpy.float32)

    Z = numpy.array(eye, numpy.float32) - numpy.array(center, numpy.float32)
    Z = normalize(Z)
    Y = numpy.array(up, numpy.float32)
    X = numpy.cross(Y, Z)
    Y = numpy.cross(Z, X)

    X = normalize(X)
    Y = normalize(Y)

    ret[0][0] = X[0]
    ret[1][0] = X[1]
    ret[2][0] = X[2]
    ret[3][0] = -numpy.dot(X, eye)
    ret[0][1] = Y[0]
    ret[1][1] = Y[1]
    ret[2][1] = Y[2]
    ret[3][1] = -numpy.dot(Y, eye)
    ret[0][2] = Z[0]
    ret[1][2] = Z[1]
    ret[2][2] = Z[2]
    ret[3][2] = -numpy.dot(Z, eye)
    ret[0][3] = 0
    ret[1][3] = 0
    ret[2][3] = 0
    ret[3][3] = 1.0
    return ret
Exemple #14
0
def TEME_to_ITRF(jd_ut1, rTEME, vTEME, xp=0.0, yp=0.0):
    """Convert TEME position and velocity into standard ITRS coordinates.

    This converts a position and velocity vector in the idiosyncratic
    True Equator Mean Equinox (TEME) frame of reference used by the SGP4
    theory into vectors into the more standard ITRS frame of reference.
    The velocity should be provided in units per day, not per second.

    From AIAA 2006-6753 Appendix C.

    """
    theta, theta_dot = theta_GMST1982(jd_ut1)
    zero = theta_dot * 0.0
    angular_velocity = array([zero, zero, -theta_dot])
    R = rot_z(-theta)

    if len(rTEME.shape) == 1:
        rPEF = (R).dot(rTEME)
        vPEF = (R).dot(vTEME) + cross(angular_velocity, rPEF)
    else:
        rPEF = einsum('ij...,j...->i...', R, rTEME)
        vPEF = einsum('ij...,j...->i...', R, vTEME) + cross(
            angular_velocity, rPEF, 0, 0).T

    if xp == 0.0 and yp == 0.0:
        rITRF = rPEF
        vITRF = vPEF
    else:
        W = (rot_x(yp)).dot(rot_y(xp))
        rITRF = (W).dot(rPEF)
        vITRF = (W).dot(vPEF)
    return rITRF, vITRF
def my_solid_angle(center, coords):
    """
    Helper method to calculate the solid angle of a set of coords from the
    center.

    Args:
        center:
            Center to measure solid angle from.
        coords:
            List of coords to determine solid angle.

    Returns:
        The solid angle.
    """
    o = np.array(center)
    r = [np.array(c) - o for c in coords]
    r.append(r[0])
    n = [np.cross(r[i + 1], r[i]) for i in range(len(r) - 1)]
    n.append(np.cross(r[1], r[0]))
    phi = 0.0
    for i in range(len(n) - 1):
        try:
            value = math.acos(-np.dot(n[i], n[i + 1]) / (np.linalg.norm(n[i]) * np.linalg.norm(n[i + 1])))
        except ValueError:
            mycos = -np.dot(n[i], n[i + 1]) / (np.linalg.norm(n[i]) * np.linalg.norm(n[i + 1]))
            if 0.999999999999 < mycos < 1.000000000001:
                value = math.acos(1.0)
            elif -0.999999999999 > mycos > -1.000000000001:
                value = math.acos(-1.0)
            else:
                raise SolidAngleError(mycos)
        phi += value
    return phi + (3 - len(r)) * math.pi
Exemple #16
0
    def calculateNormals(self):
        # Numpy magic!
        # First, reset the normals
        self._normals = numpy.zeros((self._vertex_count, 3), dtype=numpy.float32)

        if self.hasIndices():
            for face in self._indices[0:self._face_count]:
                #print(self._vertices[face[0]])
                #print(self._vertices[face[1]])
                #print(self._vertices[face[2]])
                self._normals[face[0]] = numpy.cross(self._vertices[face[0]] - self._vertices[face[1]], self._vertices[face[0]] - self._vertices[face[2]])
                length = numpy.linalg.norm(self._normals[face[0]])
                self._normals[face[0]] /= length
                self._normals[face[1]] = self._normals[face[0]]
                self._normals[face[2]] = self._normals[face[0]]
        else: #Old way of doing it, asuming that each face has 3 unique verts
            # Then, take the cross product of each pair of vectors formed from a set of three vertices.
            # The [] operator on a numpy array returns itself a numpy array. The slicing syntax is [begin:end:step],
            # so in this case we perform the cross over a two arrays. The first array is built from the difference
            # between every second item in the array starting at two and every third item in the array starting at
            # zero. The second array is built from the difference between every third item in the array starting at
            # two and every third item in the array starting at zero. The cross operation then returns an array of
            # the normals of each set of three vertices.
            n = numpy.cross(self._vertices[1::3] - self._vertices[::3], self._vertices[2::3] - self._vertices[::3])
            # We then calculate the length for each normal and perform normalization on the normals.
            l = numpy.linalg.norm(n, axis=1)
            n[:, 0] /= l
            n[:, 1] /= l
            n[:, 2] /= l
            # Finally, we store the normals per vertex, with each face normal being repeated three times, once for
            # every vertex.
            self._normals = n.repeat(3, axis=0)
Exemple #17
0
    def __init__(self, p1, p2, p3):

        # initialize points
        self.p1 = np.array(p1)
        self.p2 = np.array(p2)
        self.p3 = np.array(p3)

        # set vectors form p1 to p2 and from p1 to p3
        self.v12 = self.p2 - self.p1
        self.v13 = self.p3 - self.p1

	self.v12 = self.v12 / np.linalg.norm(self.v12)
        # calculate the normal to v12 and v13
        self.n = np.cross(self.v12, self.v13)
        self.n = self.n / np.linalg.norm(self.n)

        # calculate corresponding axes of the plane, having p1 as base
        # axisX = v12 / |v12|
        self.axisX = self.v12 / np.linalg.norm(self.v12)
        self.axisY = np.cross(self.n, self.axisX)
        #self.axisY = self.axisY / np.linalg.norm(self.axisY)

        self.rot = np.matrix([np.array(self.axisX), np.array(self.axisY),
                              np.array(self.n)])

        self.q = [ 0,0,0,0 ]
        self.q[3] = np.sqrt(1 + self.rot[0,0] + self.rot[1,1] + self.rot[2,2]) \
                / 2
        self.q[0] = (self.rot[2,1] - self.rot[1,2]) / (4 * self.q[3])
        self.q[1] = (self.rot[0,2] - self.rot[2,0]) / (4 * self.q[3])
        self.q[2] = (self.rot[1,0] - self.rot[0,1]) / (4 * self.q[3])

	self.scale = np.linalg.norm(self.p2 - self.p1)
Exemple #18
0
def test_line_modelND_estimate():
    # generate original data without noise
    model0 = LineModelND()
    model0.params = (np.array([0,0,0], dtype='float'),
                         np.array([1,1,1], dtype='float')/np.sqrt(3))
    # we scale the unit vector with a factor 10 when generating points on the
    # line in order to compensate for the scale of the random noise
    data0 = (model0.params[0] +
             10 * np.arange(-100,100)[...,np.newaxis] * model0.params[1])

    # add gaussian noise to data
    random_state = np.random.RandomState(1234)
    data = data0 + random_state.normal(size=data0.shape)

    # estimate parameters of noisy data
    model_est = LineModelND()
    model_est.estimate(data)

    # test whether estimated parameters are correct
    # we use the following geometric property: two aligned vectors have
    # a cross-product equal to zero
    # test if direction vectors are aligned
    assert_almost_equal(np.linalg.norm(np.cross(model0.params[1],
                                                model_est.params[1])), 0, 1)
    # test if origins are aligned with the direction
    a = model_est.params[0] - model0.params[0]
    if np.linalg.norm(a) > 0:
        a /= np.linalg.norm(a)
    assert_almost_equal(np.linalg.norm(np.cross(model0.params[1], a)), 0, 1)
Exemple #19
0
    def run(self):

        polyData = self.getPointCloud()
        annotation = self.getAnnotationInput()
        annotationPoint = annotation.annotationPoints[0]
        planePoints, normal = segmentation.applyLocalPlaneFit(polyData, annotationPoint, searchRadius=0.1, searchRadiusEnd=0.2)
        viewDirection = segmentation.SegmentationContext.getGlobalInstance().getViewDirection()

        if np.dot(normal, viewDirection) < 0:
            normal = -normal

        xaxis = normal
        zaxis = [0, 0, 1]
        yaxis = np.cross(zaxis, xaxis)
        xaxis = np.cross(yaxis, zaxis)
        xaxis /= np.linalg.norm(xaxis)
        yaxis /= np.linalg.norm(yaxis)

        t = transformUtils.getTransformFromAxes(xaxis, yaxis, zaxis)
        t.PostMultiply()
        t.Translate(annotationPoint)

        polyData = annotation.polyData
        polyData = segmentation.transformPolyData(polyData, t.GetLinearInverse())

        annotation.setProperty('Visible', False)
        om.removeFromObjectModel(om.findObjectByName('wall'))
        obj = vis.showPolyData(polyData, 'wall')
        obj.actor.SetUserTransform(t)
        vis.showFrame(t, 'wall frame', scale=0.2, parent=obj)
Exemple #20
0
    def __init__(self, position, direction, N=720, M=486,
                 scale=1,
                 orthographic=False):
        super(Camera, self).__init__(position)

        self._orth = orthographic

        self.z_p = 1 #focal length
        self.up = Vector(0, 1, 0)
        self.direction = direction

        #centre of the image screen
        self.c = self.position + self.z_p * self.direction 

        #horizontal screen direction
        self.u_x = (np.cross(self.direction, self.up) /
                   norm(np.cross(self.direction, self.up)))
        #vertical screen direction
        self.u_z = - self.direction
        #normal to the viewscreen
        self.u_y = np.cross(self.u_z, self.u_x)

        self.m = int(M * scale)
        self.n = int(N * scale)

        factor = 0.5
        self.hight = (1)*factor
        self.width = (16/9.0)*factor

        #vertical distance between pixels
        self.dydi = self.hight / float(self.m)
        #horizontal distance between pixels
        self.dxdi = self.width / float(self.n)
Exemple #21
0
    def render_constraints(self):
        phys = self.sim.phys
        glDisable(GL_LIGHTING)
        glEnable(GL_DEPTH_TEST)
        glEnable(GL_LINE_SMOOTH)
        glLineWidth(1.0)
        #glBegin(GL_LINES)
        glColor3f(1,0,0)
        for i in range(phys.n_planes):
            p = phys.plane_pts[i]
            nn = phys.plane_norms[i]
            n = [nn[i] for i in range(3)]

            # Make an orthonormal basis in the plane
            v1 = numpy.cross([0,0,1],n)
            if la.norm(v1)<1e-6:
                v1 = numpy.cross([0,1,0],n)
            v2 = numpy.cross(v1,n)

            glBegin(GL_LINE_STRIP)
            glVertex3f(p[0], p[1], p[2])
            #glVertex3f(p[0]+n[0]*5, p[1]+n[1]*5, p[2]+n[2]*5)
            glVertex3f(p[0]+v1[0]*5, p[1]+v1[1]*5, p[2]+v1[2]*5)
            glVertex3f(p[0]+(v1[0]+v2[0])*5, p[1]+(v1[1]+v2[1])*5, p[2]+(v1[2]+v2[2])*5)
            glVertex3f(p[0]+v2[0]*5, p[1]+v2[1]*5, p[2]+v2[2]*5)
            glVertex3f(p[0], p[1], p[2])
            glEnd()
        #glEnd()
        glEnable(GL_LIGHTING)
        glDisable(GL_DEPTH_TEST)
def rotation_angle(helix_vector, axis_vector, rotation_vector):
    reference_vector = np.cross(np.cross(helix_vector, axis_vector), helix_vector)
    second_reference_vector = np.cross(axis_vector, helix_vector)
    screw_angle = mdamath.angle(reference_vector, rotation_vector)
    alt_screw_angle = mdamath.angle(second_reference_vector, rotation_vector)
    updown = np.cross(reference_vector, rotation_vector)

    if not (np.pi < screw_angle < 3 * np.pi / 4):
        if screw_angle < np.pi / 4 and alt_screw_angle < np.pi / 2:
            screw_angle = np.pi / 2 - alt_screw_angle
        elif screw_angle < np.pi / 4 and alt_screw_angle > np.pi / 2:
            screw_angle = alt_screw_angle - np.pi / 2
        elif screw_angle > 3 * np.pi / 4 and alt_screw_angle < np.pi / 2:
            screw_angle = np.pi / 2 + alt_screw_angle
        elif screw_angle > 3 * np.pi / 4 and alt_screw_angle > np.pi / 2:
            screw_angle = 3 * np.pi / 2 - alt_screw_angle
        else:
            logger.debug("Big Screw Up: screw_angle=%g degrees", np.rad2deg(screw_angle))

    if mdamath.norm(updown) == 0:
        logger.warn("PROBLEM (vector is at 0 or 180)")

    helix_dot_rehelix = mdamath.angle(updown, helix_vector)

    #if ( helix_dot_rehelix < np.pi/2 and helix_dot_rehelix >= 0 )or helix_dot_rehelix <-np.pi/2:
    if (-np.pi / 2 < helix_dot_rehelix < np.pi / 2) or (helix_dot_rehelix > 3 * np.pi / 2):
        screw_angle = -screw_angle

    return screw_angle
def get_neuromag_transform(lpa, rpa, nasion):
    """Creates a transformation matrix from RAS to Neuromag-like space

    Resets the origin to mid-distance of peri-auricular points with nasion
    passing through y-axis.
    (mne manual, pg. 97)

    Parameters
    ----------
    lpa : numpy.array, shape = (1, 3)
        Left peri-auricular point coordinate.
    rpa : numpy.array, shape = (1, 3)
        Right peri-auricular point coordinate.
    nasion : numpy.array, shape = (1, 3)
        Nasion point coordinate.

    Returns
    -------
    trans : numpy.array, shape = (3, 3)
        Transformation matrix to Neuromag-like space.
    """
    origin = (lpa + rpa) / 2
    nasion = nasion - origin
    lpa = lpa - origin
    rpa = rpa - origin
    axes = np.empty((3, 3))
    axes[1] = nasion / linalg.norm(nasion)
    axes[2] = np.cross(axes[1], lpa - rpa)
    axes[2] /= linalg.norm(axes[2])
    axes[0] = np.cross(axes[1], axes[2])

    trans = linalg.inv(axes)
    return trans
Exemple #24
0
def _dihedral(xyz, indices, out=None):
    """Compute the dihedral angles of traj for the atom indices in indices.

    Parameters
    ----------
    xyz : np.ndarray, shape=(num_frames, num_atoms, 3), dtype=float
        The XYZ coordinates of a trajectory
    indices : np.ndarray, shape=(num_dihedrals, 4), dtype=int
        Atom indices to compute dihedrals.

    Returns
    -------
    dih : np.ndarray, shape=(num_dihedrals), dtype=float
        dih[i,j] gives the dihedral angle at traj[i] correponding to indices[j].

    """
    x0 = xyz[:, indices[:, 0]]
    x1 = xyz[:, indices[:, 1]]
    x2 = xyz[:, indices[:, 2]]
    x3 = xyz[:, indices[:, 3]]

    b1 = x1 - x0
    b2 = x2 - x1
    b3 = x3 - x2

    c1 = np.cross(b2, b3)
    c2 = np.cross(b1, b2)

    p1 = (b1 * c1).sum(-1)
    p1 *= (b2 * b2).sum(-1) ** 0.5
    p2 = (c1 * c2).sum(-1)

    return np.arctan2(p1, p2, out)
Exemple #25
0
 def _facenorm_cross_edge(self):
     ppts = self.ppts
     fnorms = self.face_normals
     fe12 = np.cross(fnorms, ppts[:,1] - ppts[:,0])
     fe23 = np.cross(fnorms, ppts[:,2] - ppts[:,1])
     fe31 = np.cross(fnorms, ppts[:,0] - ppts[:,2])
     return fe12, fe23, fe31
Exemple #26
0
	def add(self, args):
		dL, nL, stdL, dR, nR, stdR = args

		rL = np.cross(np.array([0,0,1]), nL)
		sL = np.cross(rL, nL)
		RL = np.array([rL, sL, nL])

		rR = np.cross(np.array([0,0,1]), nR)
		sR = np.cross(rR, nR)
		RR = np.array([rR, sR, nR])

		self.addPlane(RL, dL*nL)
		self.addPlane(RR, dR*nR)

		self.ax.plot([0,50], [0,0], [0,0], linewidth=2.0, color='red')
		self.ax.plot([0,0], [0,0], [0,50], linewidth=2.0, color='green')
		self.ax.plot([0,0], [0,50], [0,0], linewidth=2.0, color='blue')

		self.ax.set_xlabel('X')
		self.ax.set_ylabel('Z')
		self.ax.set_zlabel('Y')

		self.ax.text(-100,0,0, str(round(stdL, 5)), fontsize=15)
		self.ax.text(100,0,0, str(round(stdR, 5)), fontsize=15)

		self.ax.set_xlim(-150, 150)
		self.ax.set_ylim(0, 400)
		self.ax.set_zlim(-150, 150)

		self.ax.invert_xaxis()
		self.ax.invert_yaxis()
		self.ax.invert_zaxis()

		self.canvas.draw()
		self.Layout()
Exemple #27
0
    def trimField(self):
        trimStarts = self.trimOutline.starts
        trimVectors = self.trimOutline.vectors
        fieldStarts = self.design.starts
        fieldVectors = self.design.vectors
        trimLen = len(self.trimOutline)
        fieldLen = len(self.design)
        Q_Less_P = fieldStarts - trimStarts.reshape(trimLen,1,2)
        denom = np.cross(trimVectors, fieldVectors.reshape(fieldLen,1,2))
        all_t = np.cross(Q_Less_P, trimVectors.reshape(trimLen,1,2)).transpose()/denom
        all_u = np.cross(Q_Less_P, fieldVectors).transpose()/denom
        
        for t, u, line in zip(all_t, all_u, self.design):
            if not self.trimOutline.lineOutsideBoundingBox(line):
                pointSet = set([line.start])
                t = t[(0 <= u) & (u <= 1) & (0 <= t) & (t <= 1)]

                pointSet |= set(Point(line.start.x + line.vector[c.X]*value,
                                    line.start.y+line.vector[c.Y]*value)
                                    for value in t)

                pointSet.add(line.end)
                pointList = sorted(list(pointSet))
                pointVectors = np.array([point.normalVector for point in pointList])
                
                """ Calculation for midPoints from here:
                http://stackoverflow.com/questions/23855976/middle-point-of-each-pair-of-an-numpy-array
                """
                midPoints = (pointVectors[1:] + pointVectors[:-1])/2.0
                for i in range(len(midPoints)):
                    if self.trimOutline.isInside(midPoints[i]):
                        self.append(Line(pointList[i], pointList[i+1]))
Exemple #28
0
def view_transformation(E, R, V):
    n = (E - R)
    ## new
#    n /= mod(n)
#    u = np.cross(V,n)
#    u /= mod(u)
#    v = np.cross(n,u)
#    Mr = np.diag([1.]*4)
#    Mt = np.diag([1.]*4)
#    Mr[:3,:3] = u,v,n
#    Mt[:3,-1] = -E
    ## end new

    ## old
    n = n / mod(n)
    u = np.cross(V, n)
    u = u / mod(u)
    v = np.cross(n, u)
    Mr = [[u[0],u[1],u[2],0],
          [v[0],v[1],v[2],0],
          [n[0],n[1],n[2],0],
          [0,   0,   0,   1],
          ]
    #
    Mt = [[1, 0, 0, -E[0]],
          [0, 1, 0, -E[1]],
          [0, 0, 1, -E[2]],
          [0, 0, 0, 1]]
    ## end old

    return np.dot(Mr, Mt)
Exemple #29
0
def getSurfaceVectors(face, camera):

    a = np.array([face[0][0],face[1][0], face[2][0]]).T
    #a = np.array(np.dot(camera.P,a))[0]

    b = np.array([face[0][1],face[1][1], face[2][1]]).T
    #b = np.array(np.dot(camera.P,b))[0]

    c = np.array([face[0][2],face[1][2], face[2][2]]).T
    #c = np.array(np.dot(camera.P,c))[0]

    a = np.array([a[0], a[1],a[2]])
    b = np.array([b[0], b[1],b[2]])
    c = np.array([c[0], c[1],c[2]])

    #vector between two face points
    v_ba = np.array([a[0]-b[0],a[1]-b[1],a[2]-b[2]])
    v_bc = np.array([c[0]-b[0],c[1]-b[1],c[2]-b[2]])
    #surface center
    cent = ((v_ba+v_bc)/2) + b

    #normalize norm --- ghurt is working here.
    norm = np.cross(v_ba,v_bc)/np.linalg.norm(np.cross(v_ba,v_bc))

    #surface center and norm
    return (cent, norm)
Exemple #30
0
def dihedral(vec1,vec2,vec3,vec4):
    """
    Returns a float value for the dihedral angle between 
    the four vectors. They define the bond for which the 
    torsion is calculated (~) as:
    V1 - V2 ~ V3 - V4 

    The vectors vec1 .. vec4 can be array objects, lists or tuples of length 
    three containing floats. 
    For Scientific.geometry.Vector objects the behavior is different 
    on Windows and Linux. Therefore, the latter is not a featured input type 
    even though it may work.
    
    If the dihedral angle cant be calculated (because vectors are collinear),
    the function raises a DihedralGeometryError
    """    
    # create array instances.
    v1,v2,v3,v4 =create_vectors(vec1,vec2,vec3,vec4)
    all_vecs = [v1,v2,v3,v4]

    # rule out that two of the atoms are identical
    # except the first and last, which may be.
    for i in range(len(all_vecs)-1):
        for j in range(i+1,len(all_vecs)):
            if i>0 or j<3: # exclude the (1,4) pair
                equals = all_vecs[i]==all_vecs[j]
                if equals.all():
                    raise DihedralGeometryError(\
                        "Vectors #%i and #%i may not be identical!"%(i,j))

    # calculate vectors representing bonds
    v12 = v2-v1
    v23 = v3-v2
    v34 = v4-v3

    # calculate vectors perpendicular to the bonds
    normal1 = cross(v12,v23)
    normal2 = cross(v23,v34)

    # check for linearity
    if norm(normal1) == 0 or norm(normal2)== 0:
        raise DihedralGeometryError(\
            "Vectors are in one line; cannot calculate normals!")

    # normalize them to length 1.0
    normal1 = normal1/norm(normal1)
    normal2 = normal2/norm(normal2)

    # calculate torsion and convert to degrees
    torsion = angle(normal1,normal2) * 180.0/pi

    # take into account the determinant
    # (the determinant is a scalar value distinguishing
    # between clockwise and counter-clockwise torsion.
    if scalar(normal1,v34) >= 0:
        return torsion
    else:
        torsion = 360-torsion
        if torsion == 360: torsion = 0.0
        return torsion
Exemple #31
0
def cross(v1, v2):
    return np.cross(v1, v2)
Exemple #32
0
def test_static_plate_quad_point_load(plot=False):
    nx = 7
    ny = 7

    # geometry
    a = 3
    b = 7
    h = 0.005  # m

    # material
    E = 200e9
    nu = 0.3

    plate = read_isotropic(thickness=h, E=E, nu=nu, calc_scf=True)

    xtmp = np.linspace(0, a, nx)
    ytmp = np.linspace(0, b, ny)
    xmesh, ymesh = np.meshgrid(xtmp, ytmp)
    ncoords = np.vstack((xmesh.T.flatten(), ymesh.T.flatten())).T
    x = ncoords[:, 0]
    y = ncoords[:, 1]

    nids = 1 + np.arange(ncoords.shape[0])
    nid_pos = dict(zip(nids, np.arange(len(nids))))
    nids_mesh = nids.reshape(nx, ny)
    n1s = nids_mesh[:-1, :-1].flatten()
    n2s = nids_mesh[1:, :-1].flatten()
    n3s = nids_mesh[1:, 1:].flatten()
    n4s = nids_mesh[:-1, 1:].flatten()

    # creating global stiffness matrix
    K = np.zeros((DOF * nx * ny, DOF * nx * ny))

    # creating elements and populating global stiffness
    quads = []
    for n1, n2, n3, n4 in zip(n1s, n2s, n3s, n4s):
        pos1 = nid_pos[n1]
        pos2 = nid_pos[n2]
        pos3 = nid_pos[n3]
        pos4 = nid_pos[n4]
        r1 = ncoords[pos1]
        r2 = ncoords[pos2]
        r3 = ncoords[pos3]
        normal = np.cross(r2 - r1, r3 - r2)
        assert normal > 0  # guaranteeing that all elements have CCW positive normal
        quad = Quad4R()
        quad.n1 = n1
        quad.n2 = n2
        quad.n3 = n3
        quad.n4 = n4
        quad.scf13 = plate.scf_k13
        quad.scf23 = plate.scf_k23
        quad.h = h
        quad.ABDE = plate.ABDE
        update_K(quad, nid_pos, ncoords, K)
        quads.append(quad)

    print('elements created')

    # applying boundary conditions
    # simply supported
    bk = np.zeros(K.shape[0], dtype=bool)  #array to store known DOFs
    check = np.isclose(x, 0.) | np.isclose(x, a) | np.isclose(
        y, 0) | np.isclose(y, b)
    bk[2::DOF] = check

    # eliminating all u,v displacements
    bk[0::DOF] = True
    bk[1::DOF] = True

    bu = ~bk  # same as np.logical_not, defining unknown DOFs

    # external force vector for point load at center
    f = np.zeros(K.shape[0])
    fmid = 1.
    # force at center node
    check = np.isclose(x, a / 2) & np.isclose(y, b / 2)
    f[2::DOF][check] = fmid
    assert f.sum() == fmid

    # sub-matrices corresponding to unknown DOFs
    Kuu = K[bu, :][:, bu]
    fu = f[bu]

    # solving static problem
    uu = solve(Kuu, fu)

    # vector u containing displacements for all DOFs
    u = np.zeros(K.shape[0])
    u[bu] = uu

    w = u[2::DOF].reshape(nx, ny).T

    # obtained with bfsplate2d element, nx=ny=29
    wmax_ref = 6.594931610258557e-05
    assert np.isclose(wmax_ref, w.max(), rtol=0.02)
    if plot:
        import matplotlib
        matplotlib.use('TkAgg')
        import matplotlib.pyplot as plt
        plt.gca().set_aspect('equal')
        levels = np.linspace(w.min(), w.max(), 300)
        plt.contourf(xmesh, ymesh, w, levels=levels)
        plt.colorbar()
        plt.show()
Exemple #33
0
def get_rt_mat(origin, Pa, Pb, Pc):

    # define the vector for new axis
    # the x y z axis
    vab = np.subtract(Pb, Pa)
    vac = np.subtract(Pc, Pa)
    vz = np.cross(vab, vac)
    # the origin
    vtrans = np.negative(origin)

    # the normalized new x y z vector in old axis represent
    ex = vab / np.sqrt(np.dot(vab, vab))
    ez = vz / np.sqrt(np.dot(vz, vz))
    vy = np.cross(vz, ex)
    ey = vy / np.sqrt(np.dot(vy, vy))
    # print "the normalized x y z vector:"
    # print ex
    # print ey
    # print ez

    # Make the rot. mat.
    matA = np.array([ex, ey, ez])
    # print "mat. A before transpose (xyz in row represent:"
    # print matA
    matA = matA.transpose()
    # print "mat. A after transpose, the coordinate axis (xyz in col):"
    # print matA
    matR = np.linalg.inv(matA)
    # print "after inv, the real rotation matrix (in row):"
    # print matR

    # try to make 4v rot. mat.
    ex = np.append(matR[:, 0], 0)
    ey = np.append(matR[:, 1], 0)
    ez = np.append(matR[:, 2], 0)
    trans = np.array([0.0, 0.0, 0.0, 1.0])
    matR4v = np.array([ex, ey, ez, trans])
    matR4v = matR4v.transpose()
    # print "final 4v rot. mat.:"
    # print matR4v

    # try to make 4v trans. mat.
    matT4v = np.array([[1.0, 0.0, 0.0, vtrans[0]], [0.0, 1.0, 0.0, vtrans[1]],
                       [0.0, 0.0, 1.0, vtrans[2]], [0.0, 0.0, 0.0, 1.0]])
    # print "final 4v trans. mat.:"
    # print matT4v

    # try to get the final 4v mat. ( R * T mat.)
    move4v = np.dot(matR4v, matT4v)
    # print "final 4v R*T mat.:"
    # print move4v

    # for checking by users
    a = np.dot(move4v, pto4v(Pa))
    b = np.dot(move4v, pto4v(Pb))
    c = np.dot(move4v, pto4v(Pc))
    # print "the input Pa Pb Pc in new axis (shown in order: new old):"
    # print Pa, a.reshape(1,4)
    # print Pb, b.reshape(1,4)
    # print Pc, c.reshape(1,4)

    return move4v
Exemple #34
0
    def DoPublish(self, context, event):
        # TODO(SeanCurtis-TRI) We want to be able to use this visualizer to
        # draw without having it part of a Simulator. That means we'd like
        # vis.Publish(context) to work. Currently, pydrake offers no mechanism
        # to declare a forced event. However, by overriding DoPublish and
        # putting the forced event callback code in the override, we can
        # simulate it.
        # We need to bind a mechanism for declaring forced events so we don't
        # have to resort to overriding the dispatcher.

        LeafSystem.DoPublish(self, context, event)

        contact_results = self.EvalAbstractInput(context, 0).get_value()

        vis = self._meshcat_viz.vis[self._meshcat_viz.prefix]["contact_forces"]
        contacts = []

        for i_contact in range(contact_results.num_point_pair_contacts()):
            contact_info = contact_results.point_pair_contact_info(i_contact)

            # Do not display small forces.
            force_norm = np.linalg.norm(contact_info.contact_force())
            if force_norm < self._force_threshold:
                continue

            point_pair = contact_info.point_pair()
            key = (point_pair.id_A.get_value(), point_pair.id_B.get_value())
            cvis = vis[str(key)]
            contacts.append(key)
            arrow_height = self._radius * 2.0
            if key not in self._published_contacts:
                # New key, so create the geometry. Note: the height of the
                # cylinder is 2 and gets scaled to twice the contact force
                # length, because I am drawing both (equal and opposite)
                # forces.  Note also that meshcat (following three.js) puts
                # the height of the cylinder along the y axis.
                cvis["cylinder"].set_object(
                    meshcat.geometry.Cylinder(height=2.0, radius=self._radius),
                    meshcat.geometry.MeshLambertMaterial(color=0x33cc33))
                cvis["head"].set_object(
                    meshcat.geometry.Cylinder(height=arrow_height,
                                              radiusTop=0,
                                              radiusBottom=self._radius * 2.0),
                    meshcat.geometry.MeshLambertMaterial(color=0x00dd00))
                cvis["tail"].set_object(
                    meshcat.geometry.Cylinder(height=arrow_height,
                                              radiusTop=self._radius * 2.0,
                                              radiusBottom=0),
                    meshcat.geometry.MeshLambertMaterial(color=0x00dd00))

            height = force_norm / self._contact_force_scale
            cvis["cylinder"].set_transform(
                tf.scale_matrix(height, direction=[0, 1, 0]))
            cvis["head"].set_transform(
                tf.translation_matrix([0, height + arrow_height / 2.0, 0.0]))
            cvis["tail"].set_transform(
                tf.translation_matrix([0, -height - arrow_height / 2.0, 0.0]))

            # Frame C is located at the contact point, but with the world frame
            # orientation.
            if force_norm < 1e-6:
                X_CGeom = tf.identity_matrix()
            else:
                # Rotates [0,1,0] to contact_force/force_norm.
                angle_axis = np.cross(
                    np.array([0, 1, 0]),
                    contact_info.contact_force() / force_norm)
                X_CGeom = tf.rotation_matrix(
                    np.arcsin(np.linalg.norm(angle_axis)), angle_axis)
            X_WC = tf.translation_matrix(contact_info.contact_point())
            cvis.set_transform(X_WC @ X_CGeom)

        # We only delete any contact vectors that did not persist into this
        # publish.  It is tempting to just delete() the root branch at the
        # beginning of this publish, but this leads to visual artifacts
        # (flickering) in the browser.
        for key in set(self._published_contacts) - set(contacts):
            vis[str(key)].delete()

        self._published_contacts = contacts
Exemple #35
0
def rodrigues_rotate(vect, axis, phi):
    z_axis = np.array([0,0,1])
    vect_rotated = vect * np.cos(phi)
    vect_rotated += np.cross(axis, vect) * np.sin(phi)
    vect_rotated += axis * np.dot(z_axis, vect) * (1 - np.cos(phi))
    return vect_rotated
Exemple #36
0
def rotate_mat(axis, radian):
    return linalg.expm(np.cross(np.eye(3), axis / linalg.norm(axis) * radian))
Exemple #37
0
    # print(boundary_points)
    # [[-37.264586548075904, -4.818972663825464, 27.865702430922006],
    # [-37.2642637125735, -14.216115063345738, 24.446095053032607],
    # [-39.764781970840225, -12.735559826177374, 20.377266643063948],
    # [-39.76510480634263, -3.3384174266571005, 23.796874020953346]]

    # Obtaining the centroid of the module
    centroid = np.array(centroidDB.getCentroid(437526553))
    # print(centroid) # [-8.77723, 24.1215, -38.5147]

    # Normal vector obtain via cross vector between two vectors from centroid to two end points on a boundary
    vec1_on_module = centroid - np.array(
        [boundary_points[0][1], boundary_points[0][2], boundary_points[0][0]])
    vec2_on_module = centroid - np.array(
        [boundary_points[1][1], boundary_points[1][2], boundary_points[1][0]])
    norm_vec = np.cross(vec1_on_module, vec2_on_module)
    norm_vec = norm_vec / np.linalg.norm(norm_vec)

    def h(t):
        return sdlmath.get_track_point(1.1325262784957886, -1.224777340888977,
                                       1.841907024383545,
                                       -0.000797238782979548,
                                       -0.0006373987998813391,
                                       3.2855265140533447, -1, t)

    # # Debugging track drawing
    # points = np.array([ h(np.pi / 100. * i) for i in range(100) ])
    # ax_xy = pickle.load(file('/nfs-7/userdata/phchang/detector_layout_matplotlib_pickle/detxy.pickle'))
    # ax_xy.scatter(points[0:100,0], points[0:100,1])
    # plt.savefig("detxy.pdf")
Exemple #38
0
    def provideJ(self):

        nj = 3 * self.n

        Jab = np.zeros(shape=(nj, ), dtype=np.float)
        Jib = np.zeros(shape=(nj, ), dtype=np.int)
        Jjb = np.zeros(shape=(nj, ), dtype=np.int)
        Jas = np.zeros(shape=(nj, ), dtype=np.float)
        Jis = np.zeros(shape=(nj, ), dtype=np.int)
        Jjs = np.zeros(shape=(nj, ), dtype=np.int)

        r_b = np.zeros(shape=(3, ), dtype=np.int)
        r_s = np.zeros(shape=(3, ), dtype=np.int)
        Bx = np.zeros(shape=(
            3,
            3,
        ), dtype=np.int)
        Sx = np.zeros(shape=(
            3,
            3,
        ), dtype=np.int)
        cross = np.zeros(shape=(3, ), dtype=np.int)
        #ddist_cross = np.zeros(shape=(3,), dtype = np.int)
        dcross_drb = np.zeros(shape=(
            3,
            3,
        ), dtype=np.int)
        dcross_drs = np.zeros(shape=(
            3,
            3,
        ), dtype=np.int)
        dLOS_dx = np.zeros(shape=(3, ), dtype=np.int)
        dLOS_drs = np.zeros(shape=(3, ), dtype=np.int)
        dLOS_drb = np.zeros(shape=(3, ), dtype=np.int)

        for i in range(self.n):
            r_b = self.r_e2b_I[:3, i]
            r_s = self.r_e2s_I[:3, i]
            Bx = crossMatrix(r_b)
            Sx = crossMatrix(-r_s)
            dot = np.dot(r_b, r_s)
            cross = np.cross(r_b, r_s)
            dist = np.sqrt(np.dot(cross, cross))

            if dot >= 0.0:
                dLOS_drb[:] = 0.0
                dLOS_drs[:] = 0.0
            elif dist <= self.r1:
                dLOS_drb[:] = 0.0
                dLOS_drs[:] = 0.0
            elif dist >= self.r2:
                dLOS_drb[:] = 0.0
                dLOS_drs[:] = 0.0
            else:
                x = (dist - self.r1) / (self.r2 - self.r1)
                #LOS = 3*x**2 - 2*x**3
                ddist_dcross = cross / dist
                dcross_drb = Sx
                dcross_drs = Bx
                dx_ddist = 1.0 / (self.r2 - self.r1)
                dLOS_dx = 6 * x - 6 * x**2
                dLOS_drb = dLOS_dx * dx_ddist * np.dot(ddist_dcross,
                                                       dcross_drb)
                dLOS_drs = dLOS_dx * dx_ddist * np.dot(ddist_dcross,
                                                       dcross_drs)

            for k in range(3):
                iJ = i * 3 + k
                Jab[iJ] = dLOS_drb[k]
                Jib[iJ] = i
                Jjb[iJ] = (i) * 6 + k
                Jas[iJ] = dLOS_drs[k]
                Jis[iJ] = i
                Jjs[iJ] = (i) * 3 + k

        self.Jb = scipy.sparse.csc_matrix((Jab, (Jib, Jjb)),
                                          shape=(self.n, 6 * self.n))
        self.Js = scipy.sparse.csc_matrix((Jas, (Jis, Jjs)),
                                          shape=(self.n, 3 * self.n))
        self.JbT = self.Jb.transpose()
        self.JsT = self.Js.transpose()
Exemple #39
0
def vcross(a, b):
    return np.cross(a, b)
Exemple #40
0
 def getRotationMatrix(self, mol1):
     """
     return a matrix which turns this molecule to be another, the same kind of molecule
     Note: self and  the para. molecule must be the same molecule or chiral isomers
     """
     mol0 = copy.deepcopy(self)
     ZERO = 1e-10
     matrix = np.identity(3)
     rotatedAxis = []
     for i in range(len(mol0.atomDic)-1):
         origin1 = mol0.atomDic[0].coordinate
         origin2 = mol1.atomDic[0].coordinate
         x1 = mol0.atomDic[i+1].coordinate-origin1
         x2 = mol1.atomDic[i+1].coordinate-origin2
         for axis in rotatedAxis:
             x1 = x1-x1.dot(axis)*axis
             x2 = x2-x2.dot(axis)*axis
         x1_model = np.linalg.norm(x1)
         x2_model = np.linalg.norm(x2)
         if x1_model<ZERO : continue
         else:
             if len(rotatedAxis)<2:
                 rotatedAxis.append(x2/x2_model)
                 v = np.cross(x1,x2)
                 v_model = np.linalg.norm(v)
                 if v_model <ZERO:
                     if len(rotatedAxis)==1:
                         if np.linalg.norm(x1/x1_model-x2/x2_model)<ZERO:
                             pass
                         else:
                             matrix = -matrix
                             mol0.rotate(-1*np.eye(3))
                     elif len(rotatedAxis)==2:
                         if np.linalg.norm(x1/x1_model-x2/x2_model) <ZERO:
                             pass
                         else:
                             matrix = rotationMatrix(np.pi,rotatedAxis[0]).dot(matrix)
                             mol0.rotate(rotationMatrix(np.pi,rotatedAxis[0]))
                 else:
                     v = v/v_model
                     alpha = np.arccos(x1.dot(x2)/np.linalg.norm(x1)/np.linalg.norm(x2))
                     matrix = rotationMatrix(alpha,v).dot(matrix)
                     mol0.rotate(matrix)
             else:
                 if np.linalg.norm(x1/x1_model-x2/x2_model) <ZERO:
                     pass
                 else:
                     normal = np.cross(rotatedAxis[0],rotatedAxis[1])
                     normal = normal/np.linalg.norm(normal)
                     ax = np.cross(normal,np.array([0,0,1]))
                     if np.linalg.norm(ax) <ZERO:
                         matrix = np.array([[1,0,0],
                             [0,1,0],[0,0,-1]]).dot(matrix)
                     else:
                         ax = ax/np.linalg.norm(ax)
                         alpha = np.arccos(normal.dot(np.array([0,0,1])))
                         transform = rotationMatrix(alpha,ax)
                         matrix = np.linalg.inv(transform).dot(np.array([[1,0,0],
                                 [0,1,0],[0,0,-1]]).dot(transform.dot(matrix)))
                 break
     matrix[(np.abs(matrix)<ZERO)] = 0
     return matrix
def smooth(points,
           radius,
           points_per_degree=POINTS_PER_DEGREE,
           already_package_format=False):
    """Return a list of smoothed points constructed by adding points to change the given corners into circular arcs.

    At each corner, the original point is replaced by points that form circular arcs that are tangent to the original
    straight sections. Because this process replaces all of the interior points, the returned path will not contain any
    of the given points except for the start and end.

    If the given radius is too large compared to the length of the straight sections there is no way to make this
    work, and the results will be ugly. **No warning is currently given when this happens, so you need to inspect
    your design.** The given radius should be smaller than about half the length of the shortest straight section. If
    several points lie on the same line, the redundant ones are removed.

    :param iterable[indexable] points: a list of points forming the outline of the path to smooth.
    :param float radius: the radius of the circular arcs used to connect the straight segments.
    :param float points_per_degree: the number of points per degree of arc; the default of 1 is usually enough.
    :param bool already_package_format: if True, skip the conversion of the points to package format (used internally
                                        by :class:`SmoothedSegment` to avoid double-conversion).
    :return: four lists with length equal to the number of bends (i.e., two less than the number of given points)
             that contain, for each bend, (1) a list of points in that bend, (2) the bend angle in radians, (3) the
             corner point  from the original list, and (4) the vector offset of the bend arc center relative to the
             corner point.
    :rtype: tuple[list]
    """
    bends = list()
    angles = list()
    corners = list()
    offsets = list()
    if not already_package_format:
        points = to_point_list(points)
    for before, current, after in zip(points[:-2], points[1:-1], points[2:]):
        before_to_current = current - before
        current_to_after = after - current
        # The angle at which the path bends at the current point, in (-pi, pi)
        bend_angle = np.angle(
            np.inner(before_to_current, current_to_after) +
            1j * np.cross(before_to_current, current_to_after))
        if np.abs(
                bend_angle
        ) > 0:  # If the three points are co-linear then drop the current point
            # The distance from the corner point to the arc center
            h = radius / np.cos(bend_angle / 2)
            # The absolute angle of the arc center point, in (-pi, pi)
            theta = (np.arctan2(before_to_current[1], before_to_current[0]) +
                     bend_angle / 2 + np.sign(bend_angle) * np.pi / 2)
            # The offset of the arc center relative to the corner
            offset = h * np.array([np.cos(theta), np.sin(theta)])
            # The absolute angles of the new points (at least two), using the absolute center as origin
            arc_angles = (theta + np.pi + np.linspace(
                -bend_angle / 2, bend_angle / 2,
                int(
                    np.ceil(
                        np.degrees(np.abs(bend_angle)) * points_per_degree) +
                    1)))
            bend = [
                current + offset +
                radius * np.array([np.cos(phi), np.sin(phi)])
                for phi in arc_angles
            ]
            bends.append(bend)
            angles.append(bend_angle)
            corners.append(current)
            offsets.append(offset)
    return bends, angles, corners, offsets
Exemple #42
0
    def __init__(self,corner1,corner2,corner3,corner4=None,maskInside=True,coordinates=None,name=None):
        """Generate a box mask with side corner1, corner 2, corner 3 and use corner 4 to define height.
        
        args:
            corner1 (3D point): First corner
            
            corner2 (3D point): Second corner
            
            corner2 (3D point): Third corner
            
        kwargs:
            corner4 (3D point): Fourth corner used to define height of box. If corner4 is not set corner1, corner2, corner3 are assumed to be maximal positions.
            
            maskInside (bool): If true, points inside is masked otherwise outside (default True)
            
            coordinates (list of str): List containing names of attributes on point object. If None, use x,y (default None)
            
        
        """
        super(boxMask,self).__init__(coordinates=coordinates,maskInside=maskInside,name=name)
        self.corner1 = np.array(corner1,dtype=float)
        self.corner2 = np.array(corner2,dtype=float)
        self.corner3 = np.array(corner3,dtype=float)
        self.corner4 = np.array(corner4,dtype=float)
        
        

        if corner4 is None: # use provided corners and find bounding box
            X,Y,Z = [[np.min(x),np.max(x)] for x in np.array([corner1,corner2,corner3]).T]
            c1 = np.array([X[0],Y[0],Z[0]])
            c2 = np.array([X[1],Y[0],Z[0]])
            c3 = np.array([X[0],Y[1],Z[0]])
            c4 = np.array([X[1],Y[1],Z[0]])
            c5 = np.array([X[0],Y[0],Z[1]])
            c6 = np.array([X[1],Y[0],Z[1]])
            c7 = np.array([X[0],Y[1],Z[1]])
            c8 = np.array([X[1],Y[1],Z[1]])
            
            self.length = X[1]-X[0]
            self.width = Y[1]-Y[0]
            self.height = Z[1]-Z[0]
            
            self.planeNormal = np.array([0,0,1])#np.cross(edge1,edge2)
            #planeNormal *= 1.0/np.linalg.norm(planeNormal)
            
            #self.rotationMatrix = RotationMatrix3D(0.0,n=None,deg=False)
            
        else:
            c1 = np.array(corner1,dtype=float)
            c2 = np.array(corner2,dtype=float)
            
            # Start by finding common plane for c1, c2, and  c3
            edge1 = c2 - c1 # Defined as line between first and second corner
            edge2 = corner3 - c1 # Defined as line between first and second corner
            
            self.length = np.linalg.norm(edge1)
            
            edge1 *= 1.0/self.length
            edge2 *= 1.0/np.linalg.norm(edge2)
            
            planeNormal = np.cross(edge1,edge2)
            self.planeNormal = planeNormal/np.linalg.norm(planeNormal)
            
            cross = np.cross(edge1,self.planeNormal)
            
            
            width = np.dot(cross,corner3 - c1) # distance from c3 orthogonally on edge1
            widthSign = np.sign(width)
            self.width = np.abs(width)
            
            
            # calculate corner point for c3 and c4
            c4 = c2+widthSign*cross*self.width
            
            c3 = c4-c2+c1 # Find corresponding c4
            
            # find cube
            height = np.dot(self.planeNormal,corner4-c1)
            heightSign = np.sign(height)
            self.height = np.abs(height)
            
            c5 = c1+heightSign*self.planeNormal*self.height
            c6 = c5+c2-c1 
            c7 = c5+c3-c1 
            c8 = c5+c4-c1 
            
        self.corners = np.array([c1,c2,c3,c4,c5,c6,c7,c8])
        self.center = np.array([np.mean(X) for X in self.corners.T]).reshape(1,-1)
        
        # Create rotation matrix.

        # rotate planeNormal to lie along x,z plane (https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d)
        
        v = np.cross(self.planeNormal,np.array([0.0,1.0,0.0]))
        Vs = np.zeros((3,3))
        Vs[0,1] = -v[2]
        Vs[0,2] = +v[1]
        Vs[1,2] = -v[0]
        Vs[1,0] = -Vs[0,1]
        Vs[0,2] = -Vs[0,2]
        Vs[2,1] = -Vs[1,2]
        
        c = np.dot(self.planeNormal,np.array([0.0,1.0,0.0]))
        
        rot1 = np.eye(3)+Vs+np.dot(Vs,Vs)*1.0/(1+c)
        
        
        c1r1,c2r1,c3r1,c4r1,c5r1,c6r1,c7r1,c8r1 = [np.dot(rot1,(x-self.center).T) for x in [c1,c2,c3,c4,c5,c6,c7,c8]]
        
        # rotate around y into plane using edge 1 (c2-c1)
        edge = c2r1-c1r1
        theta = np.arctan2(edge[2],edge[0])
        
        rot2 = RotationMatrix3D(theta,n=[0,1,0],deg=False)
        self.rotationMatrix = np.einsum('ij,jk->ik',rot2,rot1)
Exemple #43
0
def laplacian(M, mode=None, normalized=True):
    """Return the Laplacian of the weigth matrix."""
    if mode == 'cotan':
        n = len(M.v)
        W_ij = np.empty(0)
        I = np.empty(0, np.int32)
        J = np.empty(0, np.int32)
        for i1, i2, i3 in [(0, 1, 2), (1, 2, 0), (2, 0, 1)]:
            vi1 = M.f[:, i1]
            vi2 = M.f[:, i2]
            vi3 = M.f[:, i3]
            u = M.v[vi2] - M.v[vi1]
            v = M.v[vi3] - M.v[vi1]

            veclen = lambda vectors: np.sqrt(np.sum(vectors**2, axis=-1))

            cotan = -(u * v).sum(axis=1) / veclen(np.cross(u, v))

            #if normalized:
            #    cotan /= np.sum(cotan)

            W_ij = np.append(W_ij, 0.5 * cotan)
            I = np.append(I, vi2)
            J = np.append(J, vi3)
            W_ij = np.append(W_ij, 0.5 * cotan)
            I = np.append(I, vi3)
            J = np.append(J, vi2)
        L = scipy.sparse.csr_matrix((W_ij, (I, J)), shape=(n, n))

        d = -L * np.ones(n)

        if not normalized:
            L = scipy.sparse.spdiags(d, 0, n, n) - L
        else:
            d += np.spacing(np.array(0, L.dtype))
            d = 1 / np.sqrt(d)
            D = scipy.sparse.diags(d, 0)
            I = scipy.sparse.identity(d.size, dtype=L.dtype)
            L = I - D * L * D
            #val = np.repeat(d, L.getnnz(axis=1))
            #L.data /= val

        L = L.tocsr()
        print(L)

        assert type(L) is scipy.sparse.csr.csr_matrix
        return L

    else:
        W = get_vert_connectivity(M)
        # Degree matrix.
        d = W.sum(axis=0)

        # Laplacian matrix.
        if not normalized:
            D = scipy.sparse.diags(d.A.squeeze(), 0)
            L = D - W
        else:
            d += np.spacing(np.array(0, W.dtype))
            d = 1 / np.sqrt(d)
            D = scipy.sparse.diags(d.A.squeeze(), 0)
            I = scipy.sparse.identity(d.size, dtype=W.dtype)
            L = I - D * W * D

        # assert np.abs(L - L.T).mean() < 1e-9
        assert type(L) is scipy.sparse.csr.csr_matrix
        return L
	def angular_acceleration(self,inputs, omega, I, L, b, k):
		tau = self.torques(inputs, L, b, k);
		omegad = np.dot(np.linalg.inv(I), (tau - np.cross(omega.flatten(), np.dot(I, omega).flatten())));
		return self.lineToColumn(omegad)
    def setupJoints(self):
        """
        Evaluate symbolic expressions for joint locations and store them in self.locations.
        Joint locations are specified symbolically in the *Joints list in the beginning of the
        rig_*.py files (e.g. ArmJoints in rig_arm.py). 
        """

        for (key, typ, data) in self.joints:
            if typ == 'j':
                loc = mh2proxy.calcJointPos(self.mesh, data)
                self.locations[key] = loc
                self.locations[data] = loc
            elif typ == 'v':
                v = int(data)
                self.locations[key] = self.mesh.coord[v]
            elif typ == 'x':
                self.locations[key] = np.array(
                    (float(data[0]), float(data[2]), -float(data[1])))
            elif typ == 'vo':
                v = int(data[0])
                offset = np.array(
                    (float(data[1]), float(data[3]), -float(data[2])))
                self.locations[key] = self.mesh.coord[v] + offset
            elif typ == 'vl':
                ((k1, v1), (k2, v2)) = data
                loc1 = self.mesh.coord[int(v1)]
                loc2 = self.mesh.coord[int(v2)]
                self.locations[key] = k1 * loc1 + k2 * loc2
            elif typ == 'f':
                (raw, head, tail, offs) = data
                rloc = self.locations[raw]
                hloc = self.locations[head]
                tloc = self.locations[tail]
                vec = tloc - hloc
                vraw = rloc - hloc
                x = np.dot(vec, vraw) / np.dot(vec, vec)
                self.locations[key] = hloc + x * vec + np.array(offs)
            elif typ == 'b':
                self.locations[key] = self.locations[data]
            elif typ == 'p':
                x = self.locations[data[0]]
                y = self.locations[data[1]]
                z = self.locations[data[2]]
                self.locations[key] = np.array((x[0], y[1], z[2]))
            elif typ == 'vz':
                v = int(data[0])
                z = self.mesh.coord[v][2]
                loc = self.locations[data[1]]
                self.locations[key] = np.array((loc[0], loc[1], z))
            elif typ == 'X':
                r = self.locations[data[0]]
                (x, y, z) = data[1]
                r1 = np.array([float(x), float(y), float(z)])
                self.locations[key] = np.cross(r, r1)
            elif typ == 'l':
                ((k1, joint1), (k2, joint2)) = data
                self.locations[key] = k1 * self.locations[
                    joint1] + k2 * self.locations[joint2]
            elif typ == 'o':
                (joint, offsSym) = data
                if type(offsSym) == str:
                    offs = self.locations[offsSym]
                else:
                    offs = np.array(offsSym)
                self.locations[key] = self.locations[joint] + offs
            else:
                raise NameError("Unknown %s" % typ)
        return
Exemple #46
0
 def crossProduct(self, rhs):
     return matrix(np.cross(np.transpose(self.__m),
                            np.transpose(rhs.__m))).transpose()
Exemple #47
0
def get_extended_system(system, radial_cutoff, centers=None, return_cell_indices=False):
    """Used to create a periodically extended system. If centers are not
    specified, simply takes returns the original system multiplied by an
    integer amount of times in each direction to cover the radial cutoff. If
    centers are provided, returns the exact atoms that are within the given
    radial cutoff from the given centers.

    Args:
        original_system (ase.Atoms): The original periodic system to duplicate.
        radial_cutoff (float): The radial cutoff to use in constructing the
            extended system.
        centers (np.ndarray): Array of xyz-coordinates from which the distance
            is calculated. If provided, these centers are used to calculate the
            exact distance and only atoms within the radial cutoff from these
            centers are returned.
        return_cell_indices (boolean): Whether to return an array of cell
            indices for each atom in the extended system.

    Returns:
        ase.Atoms | tuple: If return_cell_indices is False, returns the new
        extended system. Else returns a tuple containing the new extended
        system as the first entry and the index of the periodically repeated
        cell for each atom as the second entry.
    """
    # Determine the upper limit of how many copies we need in each cell vector
    # direction. We take as many copies as needed to reach the radial cutoff.
    # Notice that we need to use vectors that are perpendicular to the cell
    # vectors to ensure that the correct atoms are included for non-cubic cells.
    cell = np.array(system.get_cell())
    a1, a2, a3 = cell[0], cell[1], cell[2]
    b1 = np.cross(a2, a3, axis=0)
    b2 = np.cross(a3, a1, axis=0)
    b3 = np.cross(a1, a2, axis=0)
    p1 = np.dot(a1, b1) / np.dot(b1, b1) * b1  # Projections onto perpendicular vectors
    p2 = np.dot(a2, b2) / np.dot(b2, b2) * b2
    p3 = np.dot(a3, b3) / np.dot(b3, b3) * b3
    xyz_arr = np.linalg.norm(np.array([p1, p2, p3]), axis=1)
    cell_images = np.ceil(radial_cutoff/xyz_arr)
    nx = int(cell_images[0])
    ny = int(cell_images[1])
    nz = int(cell_images[2])
    n_copies_axis = np.array([nx, ny, nz], dtype=int)

    # If no centers are given, and the cell indices are not requested, simply
    # return the multiplied system. This is much faster.
    if centers is None and not return_cell_indices:

        n_atoms = len(system)
        n_rep = np.product(2*n_copies_axis+1)  # Number of repeated copies
        ext_pos = np.tile(system.get_positions(), (n_rep, 1))

        # Calculate the extended system positions so that the original cell
        # stays in place: both in space and in index
        i_curr = 0
        for m0 in np.append(np.arange(0, nx+1), np.arange(-nx, 0)):
            for m1 in np.append(np.arange(0, ny+1), np.arange(-ny, 0)):
                for m2 in np.append(np.arange(0, nz+1), np.arange(-nz, 0)):
                    ext_pos[i_curr:i_curr+n_atoms] += np.dot((m0, m1, m2), cell)
                    i_curr += n_atoms

        ext_symbols = np.tile(system.get_atomic_numbers(), n_rep)
        extended_system = Atoms(
            positions=ext_pos,
            symbols=ext_symbols,
        )

        return extended_system

    # If centers are given and/or cell indices are needed, the process is done
    # one cell at a time to keep track of the cell inded and the distances.
    # This is a bit slower.
    else:
        # We need to specify that the relative positions should not be wrapped.
        # Otherwise the repeated systems may overlap with the positions taken
        # with get_positions()
        relative_pos = np.array(system.get_scaled_positions(wrap=False))
        numbers = np.array(system.numbers)
        cartesian_pos = np.array(system.get_positions())

        # Create copies of the cell but keep track of the atoms in the
        # original cell
        num_extended = []
        pos_extended = []
        num_extended.append(numbers)
        pos_extended.append(cartesian_pos)
        a = np.array([1, 0, 0])
        b = np.array([0, 1, 0])
        c = np.array([0, 0, 1])
        cell_indices = [np.zeros((len(system), 3), dtype=int)]

        for i in range(-n_copies_axis[0], n_copies_axis[0]+1):
            for j in range(-n_copies_axis[1], n_copies_axis[1]+1):
                for k in range(-n_copies_axis[2], n_copies_axis[2]+1):
                    if i == 0 and j == 0 and k == 0:
                        continue

                    # Calculate the positions of the copied atoms and filter
                    # out the atoms that are farther away than the given
                    # cutoff.
                    num_copy = np.array(numbers)
                    pos_copy = np.array(relative_pos)

                    pos_shifted = pos_copy-i*a-j*b-k*c
                    pos_copy_cartesian = np.dot(pos_shifted, cell)

                    # Only distances to the atoms within the interaction limit
                    # are considered.
                    distances = cdist(pos_copy_cartesian, centers)
                    weight_mask = distances < radial_cutoff

                    # Create a boolean mask that says if the atom is within the
                    # range from at least one atom in the original cell
                    valids_mask = np.any(weight_mask, axis=1)

                    if np.any(valids_mask):
                        valid_pos = pos_copy_cartesian[valids_mask]
                        valid_num = num_copy[valids_mask]
                        valid_ind = np.tile(np.array([i, j, k], dtype=int), (len(valid_num), 1))

                        pos_extended.append(valid_pos)
                        num_extended.append(valid_num)
                        cell_indices.append(valid_ind)

        pos_extended = np.concatenate(pos_extended)
        num_extended = np.concatenate(num_extended)
        cell_indices = np.vstack(cell_indices)

        extended_system = Atoms(
            positions=pos_extended,
            numbers=num_extended,
            cell=cell,
            pbc=False
        )

        return extended_system, cell_indices
Exemple #48
0
def get_new_axis_x(delline):
    # Need CONTCAR and KPOINTS
    rf = open('CONTCAR', 'r')
    lines = rf.readlines()
    rf.close()
    # Convert lattice constants in real space to inverted space
    real_lattice_x = np.array([
        abs(float(lines[2].split()[0])),
        abs(float(lines[2].split()[1])),
        abs(float(lines[2].split()[2]))
    ])
    real_lattice_y = np.array([
        abs(float(lines[3].split()[0])),
        abs(float(lines[3].split()[1])),
        abs(float(lines[3].split()[2]))
    ])
    real_lattice_z = np.array([
        abs(float(lines[4].split()[0])),
        abs(float(lines[4].split()[1])),
        abs(float(lines[4].split()[2]))
    ])
    volume_xyz = np.dot(np.cross(real_lattice_x, real_lattice_y),
                        real_lattice_z)
    down_lattice_x = 2 * math.pi * np.cross(real_lattice_y,
                                            real_lattice_z) / volume_xyz
    down_lattice_y = 2 * math.pi * np.cross(real_lattice_x,
                                            real_lattice_z) / volume_xyz
    down_lattice_z = 2 * math.pi * np.cross(real_lattice_x,
                                            real_lattice_y) / volume_xyz
    rf = open('KPOINTS', 'r')
    kpt_lines = rf.readlines()
    rf.close()

    def down_distance_calculation_kpt(line_i, line_next_i):
        # Calculate distance of points in KPOINTS file
        dot_x = float(kpt_lines[line_i].split()[0]) - float(
            kpt_lines[line_next_i].split()[0])
        dot_y = float(kpt_lines[line_i].split()[1]) - float(
            kpt_lines[line_next_i].split()[1])
        dot_z = float(kpt_lines[line_i].split()[2]) - float(
            kpt_lines[line_next_i].split()[2])
        dot_i = np.array([dot_x, dot_y, dot_z])
        down_dot_x = np.dot(
            dot_i, [down_lattice_x[0], down_lattice_y[0], down_lattice_z[0]])
        down_dot_y = np.dot(
            dot_i, [down_lattice_x[1], down_lattice_y[1], down_lattice_z[1]])
        down_dot_z = np.dot(
            dot_i, [down_lattice_x[2], down_lattice_y[2], down_lattice_z[2]])
        down_dot_i = np.array([down_dot_x, down_dot_y, down_dot_z])
        distance = math.sqrt(np.dot(down_dot_i, down_dot_i))
        return distance

    # Making coordinate axes after proportional compression
    new_axis_x = []
    compression_radio = []
    insert_point = int(kpt_lines[1].split()[0]) - 1
    num_axis_x = float(0)
    new_axis_x.append(num_axis_x)
    for i in range(0, len(delline) + 1):
        k = i * 3 + 4
        compression_radio.append(down_distance_calculation_kpt(k, k + 1))
        for j in range(0, insert_point):
            num_axis_x = num_axis_x + down_distance_calculation_kpt(k, k + 1)
            new_axis_x.append(num_axis_x)
    # Get the K-path point density of each segment
    int_compress_radio = []
    for i in compression_radio:
        int_compress_radio.append(int(max(compression_radio) // i))

    return new_axis_x, int_compress_radio, insert_point
Exemple #49
0
def monte_carlo():
    elevation = 45 * deg
    cam_dist = 0.2
    cam_dist_xy = np.cos(elevation) * cam_dist * 0.5
    diameter = 0.01
    view_diameter_ratio = 10
    fov = np.arctan(diameter * view_diameter_ratio / 2 / cam_dist) * 2
    resolution = 200
    K = get_cam_K(resolution, fov)

    hole_world = np.array((0, 0, 0)).reshape(3, 1)
    peg_world = np.array((0, 0.005, 0.01)).reshape(3, 1)

    sigma_px = 1
    sigma_K = 2
    sigma_t_p = 0.01
    max_angle_t = 2 * deg

    N = 200
    alpha = .5 / N**0.1
    pt_size = 10

    print('fov', fov * 180 / np.pi)
    thetas = [np.pi / n for n in (2, 4, 8)]

    fig, ax = plt.subplots(1, 1, figsize=(5, 5))
    ax.set_xlim(0, resolution)
    ax.set_ylim(0, resolution)
    center = (resolution / 2, resolution / 2)
    ax.add_artist(plt.Circle(center, resolution / view_diameter_ratio / 2))
    ax.scatter(*(sigma_px * np.random.randn(N, 2) + center).T,
               s=pt_size,
               alpha=alpha,
               lw=0,
               c='r',
               zorder=3)
    ax.set_aspect(1)
    ax.set_xlabel('u [px]')
    ax.set_ylabel('v [px]')
    plt.tight_layout()

    fig, axs = plt.subplots(1, 3, figsize=(15, 5))
    text = 'elevation: {:.2f} deg'.format(elevation / deg)
    text += ', c2w unc.: ({:.2f} deg, {:.2f} mm)'.format(
        max_angle_t / deg, sigma_t_p * 1e3)
    text += ', vision unc.: {:.2f}'.format(sigma_px)
    text += ', K unc.: {:.2f}'.format(sigma_K)
    fig.suptitle(text)

    for i, (theta, ax) in enumerate(zip(thetas, axs.reshape(-1))):
        cams_t_world = [
            get_cam_t_hole(cam_dist, azimuth, elevation)
            for azimuth in (0, theta)
        ]

        holes = []
        pegs = []
        for _ in range(N):
            Ks_ = K.copy(), K.copy()
            for K_ in Ks_:
                K_[:2] += np.random.randn(2, 3) * sigma_K
            c2ws_ = [
                c2w @ noise_transform(sigma_t_p, max_angle_t)
                for c2w in cams_t_world
            ]
            for p, ls in zip((hole_world, peg_world), (holes, pegs)):
                p_cams = [c2w.inv() @ p for c2w in c2ws_]
                p_imgs_ = [
                    cam_to_image(p_cam, K) + np.random.randn(2, 1) * sigma_px
                    for p_cam in p_cams
                ]
                p_cams_ = [
                    image_to_cam(p_img_, K_)
                    for p_img_, K_ in zip(p_imgs_, Ks_)
                ]
                p_lines = [
                    line_eq((c2w @ p_cam_)[:2, 0], c2w.t[:2])
                    for c2w, p_cam_ in zip(cams_t_world, p_cams_)
                ]
                p_ = np.cross(*p_lines)
                p_ = p_[:2] / p_[2]
                ls.append(p_)
        holes = np.array(holes)
        pegs = np.array(pegs)

        for ps, name in zip((holes, pegs, pegs - holes),
                            ('hole', 'peg', 'direction')):
            ax.scatter(*ps.T, alpha=alpha, s=pt_size, lw=0, label=name)
        # plt.hexbin(*ps.T, extent=(-hole_distance, hole_distance, -hole_distance, hole_distance), cmap=c, alpha=0.3)
        a_t, b_t = cams_t_world[0].t[:2], cams_t_world[1].t[:2]
        ax.scatter([a_t[0], b_t[0]], [a_t[1], b_t[1]], label='cams')
        ax.grid()
        ax.add_artist(
            plt.Circle(hole_world[:2, 0],
                       diameter / 2,
                       fill=False,
                       color='blue'))
        ax.add_artist(
            plt.Circle(peg_world[:2, 0],
                       diameter / 2,
                       fill=False,
                       color='darkorange'))
        ax.set_aspect(1)
        ax.set_xlim(-cam_dist_xy, cam_dist_xy)
        ax.set_ylim(-cam_dist_xy, cam_dist_xy)
        ax.set_xlabel('x [m]')
        ax.set_ylabel('y [m]')
        ax.set_title('azimuth diff: {:.2f} deg'.format(theta / deg))
        ax.legend()
    plt.tight_layout()
    plt.show()
def __place_edge_1node(arg, unit_cell, edge_coord, node_1_coord,
                       v11_nbors_for_e1):
    edge = __edge_properties(arg)

    connection_site_edge = edge[0]
    distance_connection_site = edge[1]
    angle_connection_site_pair = edge[2]
    connectivity = edge[3]
    elements = edge[4]
    element_coord = edge[5]

    bb_elements = []
    bb_frac_coordinates = []
    bb_connectivity = []
    for j in range(len(edge_coord)):
        node_1_vector = []
        node_2_vector = []

        ##Get coordinates of neighboring nodes to find connection vectors
        node_1_vector.append(node_1_coord[v11_nbors_for_e1[j][0]])

        node_2_vector.append(node_1_coord[v11_nbors_for_e1[j][1]])
        node_1_vector = np.asarray(
            node_1_vector)  # fract. coord. of neigboring nodes
        node_2_vector = np.asarray(node_2_vector)

        edge_node_1_vector = []
        for i in range(len(node_1_vector)):
            diffa = node_1_vector[i][0] - edge_coord[j][0]
            diffb = node_1_vector[i][1] - edge_coord[j][1]
            diffc = node_1_vector[i][2] - edge_coord[j][2]

            ### PERIODIC BOUNDARY CONDITIONS
            if diffa > 0.5:
                node_1_vector[i][0] = node_1_vector[i][0] - 1
            elif diffa < -0.5:
                node_1_vector[i][0] = node_1_vector[i][0] + 1

            if diffb > 0.5:
                node_1_vector[i][1] = node_1_vector[i][1] - 1
            elif diffb < -0.5:
                node_1_vector[i][1] = node_1_vector[i][1] + 1

            if diffc > 0.5:
                node_1_vector[i][2] = node_1_vector[i][2] - 1
            elif diffc < -0.5:
                node_1_vector[i][2] = node_1_vector[i][2] + 1

            edge_node_1_vector.append(node_1_vector[i] - edge_coord[j])

        edge_node_1_vector = np.asarray(
            edge_node_1_vector
        )  ## fract vectors edge to node adjusted for PBCs

        node_1_vector_real = []
        for i in range(len(edge_node_1_vector)):
            vector_1_real = np.dot(np.transpose(unit_cell),
                                   edge_node_1_vector[i])
            node_1_vector_real.append(vector_1_real)

        node_1_vector_real = np.asarray(
            node_1_vector_real
        )  # real (not fractional) coord vector of network

        edge_node_2_vector = []
        for i in range(len(node_2_vector)):
            diffa = node_2_vector[i][0] - edge_coord[j][0]
            diffb = node_2_vector[i][1] - edge_coord[j][1]
            diffc = node_2_vector[i][2] - edge_coord[j][2]

            ### PERIODIC BOUNDARY CONDITIONS
            if diffa > 0.5:
                node_2_vector[i][0] = node_2_vector[i][0] - 1
            elif diffa < -0.5:
                node_2_vector[i][0] = node_2_vector[i][0] + 1

            if diffb > 0.5:
                node_2_vector[i][1] = node_2_vector[i][1] - 1
            elif diffb < -0.5:
                node_2_vector[i][1] = node_2_vector[i][1] + 1

            if diffc > 0.5:
                node_2_vector[i][2] = node_2_vector[i][2] - 1
            elif diffc < -0.5:
                node_2_vector[i][2] = node_2_vector[i][2] + 1

            edge_node_2_vector.append(node_2_vector[i] - edge_coord[j])

        edge_node_2_vector = np.asarray(
            edge_node_2_vector
        )  ## fract vectors from edge to node 2 adjusted for PBCs

        node_2_vector_real = []
        for i in range(len(edge_node_2_vector)):
            vector_2_real = np.dot(np.transpose(unit_cell),
                                   edge_node_2_vector[i])
            node_2_vector_real.append(vector_2_real)

        node_2_vector_real = np.asarray(
            node_2_vector_real
        )  # real (not fractional) coord vector of network

        edge_coord_real = np.dot(
            np.transpose(unit_cell),
            edge_coord[j])  # real coord of network edge (centroid of edge)

        norm_node_1_vector_real = []
        for i in range(len(node_1_vector_real)):
            norm = node_1_vector_real[i] / np.linalg.norm(
                node_1_vector_real[i])
            norm_node_1_vector_real.append(norm)

        norm_node_1_vector_real = np.asarray(
            norm_node_1_vector_real)  # normalized network vectors

        norm_node_2_vector_real = []
        for i in range(len(node_2_vector_real)):
            norm = node_2_vector_real[i] / np.linalg.norm(
                node_2_vector_real[i])
            norm_node_2_vector_real.append(norm)

        norm_node_2_vector_real = np.asarray(
            norm_node_2_vector_real)  # normalized network vectors

        connection_edge = []
        connection_1 = norm_node_1_vector_real[0] * distance_connection_site[0]
        connection_2 = norm_node_2_vector_real[0] * distance_connection_site[
            1]  ##coordinates to where edge connection sites should be placed

        connection_edge.append(connection_1)
        connection_edge.append(connection_2)
        connection_edge.append(np.cross(connection_1, connection_2))
        connection_edge = np.asarray(connection_edge)

        connection_site = []
        connection_site.append(connection_site_edge[0])
        connection_site.append(connection_site_edge[1])
        connection_site.append(
            np.cross(connection_site_edge[0], connection_site_edge[1]))
        connection_site = np.asarray(connection_site)

        ##Calculate transformation matrix, using quaternions, to map building block vectors onto network vectors
        tfmatrix = superimposition_matrix(np.transpose(connection_site),
                                          np.transpose(connection_edge),
                                          usesvd=False)

        connection_site_plusone = np.append(
            connection_site, np.ones([len(connection_site), 1]),
            1)  # add a column of ones for dimension agreement

        tf_connection_site = []
        for i in range(len(connection_site)):
            new_sites = np.dot(
                tfmatrix, connection_site_plusone[i]
            )  #apply transformation matrix to each building block vector
            tf_connection_site.append(new_sites)

        tf_connection_site = np.asarray(
            tf_connection_site
        )  #coordinates of building block connection sites, mapped onto network node sites
        tf_connection_site = tf_connection_site[:, :
                                                -1]  #remove the column of ones, to obtain final set of coordinates

        ###Apply transformation matrix to all atoms in building block
        element_coord_plusone = np.append(element_coord,
                                          np.ones([len(element_coord), 1]), 1)

        tf_element_coord = []
        for i in range(len(element_coord)):
            new_element = np.dot(tfmatrix, element_coord_plusone[i])
            tf_element_coord.append(new_element)
        tf_element_coord = np.asarray(tf_element_coord)
        tf_element_coord = tf_element_coord[:, :-1]

        tf_frac_element_coord = []
        for i in range(len(tf_element_coord)):
            frac_element_coord = np.dot(np.transpose(np.linalg.inv(unit_cell)),
                                        tf_element_coord[i])
            frac_element_coord = frac_element_coord + edge_coord[j]
            tf_frac_element_coord.append(frac_element_coord)

        tf_frac_element_coord = np.asarray(
            tf_frac_element_coord)  #edge after transformation, in frac coords

        bb_elements.append(elements)
        bb_frac_coordinates.append(tf_frac_element_coord)
        bb_connectivity.append(connectivity)
    bb_elements = np.asarray(bb_elements)
    bb_frac_coordinates = np.asarray(bb_frac_coordinates)
    bb_connectivity = np.asarray(bb_connectivity)

    return bb_elements, bb_frac_coordinates, bb_connectivity
Exemple #51
0
def drawHyrosphere(hyrosphere):
    #glTranslatef(hyrosphere.position[0],hyrosphere.position[1], hyrosphere.position[2])

    U = hyrosphere.U
    A = U * np.sqrt(1.0 / 8.0)

    b1 = np.cross(A[0, :], A[1, :])
    b2 = np.cross(A[1, :], A[2, :])
    b3 = np.cross(A[2, :], A[3, :])
    b4 = np.cross(A[3, :], A[0, :])

    b1 = b1 / np.linalg.norm(b1) * hyrosphere.t_len / 2.0
    b2 = b2 / np.linalg.norm(b2) * hyrosphere.t_len / 2.0
    b3 = b3 / np.linalg.norm(b3) * hyrosphere.t_len / 2.0
    b4 = b4 / np.linalg.norm(b4) * hyrosphere.t_len / 2.0

    b1 = np.dot(rotate_vec(U[0, :], hyrosphere.phi[0]), b1)
    b2 = np.dot(rotate_vec(U[1, :], hyrosphere.phi[1]), b2)
    b3 = np.dot(rotate_vec(U[2, :], hyrosphere.phi[2]), b3)
    b4 = np.dot(rotate_vec(U[3, :], hyrosphere.phi[3]), b4)

    B = np.array([b1, b2, b3, b4])
    R = A + B

    zeros = np.zeros(3)
    drawLines(start=[zeros, zeros, zeros, zeros],
              end=A,
              color=(1, 0, 0, 0.5),
              position=(0, 0, 0, 0))
    drawLines(start=A, end=R, color=(1, 0, 0, 0.5), position=(0, 0, 0, 0))

    #drawCylinders([zeros,zeros,zeros, zeros],A,radius=0.02, color=(1,0,0,0.5))
    #drawCylinders(A,R,radius=0.02, color=(1,0,0,0.5))
    drawArrow(np.zeros(3),
              hyrosphere.velocity,
              radius=0.02,
              color=(1, 0, 0, 0.5))

    drawCircle(B[0], A[0], A[0], color=(0, 0, 0.7, 0.3))
    drawCircle(B[1], A[1], A[1], color=(0, 0, 0.7, 0.3))
    drawCircle(B[2], A[2], A[2], color=(0, 0, 0.7, 0.3))
    drawCircle(B[3], A[3], A[3], color=(0, 0, 0.7, 0.3))

    drawSphere(center=(0, 0, 0),
               radius=hyrosphere.t_len * np.sqrt(3.0 / 8.0),
               colors=(90.0 / 256, 1.0, 39.0 / 256, 0.3))
    drawSphere(center=R[0],
               radius=hyrosphere.t_len * np.sqrt(3.0 / 8.0) / 20,
               colors=(0, 0, 0, 0.2))
    drawSphere(center=R[1],
               radius=hyrosphere.t_len * np.sqrt(3.0 / 8.0) / 20,
               colors=(0, 0, 0, 0.2))
    drawSphere(center=R[2],
               radius=hyrosphere.t_len * np.sqrt(3.0 / 8.0) / 20,
               colors=(0, 0, 0, 0.2))
    drawSphere(center=R[3],
               radius=hyrosphere.t_len * np.sqrt(3.0 / 8.0) / 20,
               colors=(0, 0, 0, 0.2))

    #os_vec = np.asarray([0.0,0.0,-hyrosphere.radius])
    #drawArrow(os_vec, os_vec + hyrosphere.Omega , radius=0.02, color=(1,0,0,0.5), nseg=10, mseg=10)

    text = "position : {0:.2f} {1:.2f} {2:.2f}".format(hyrosphere.position[0],
                                                       hyrosphere.position[1],
                                                       hyrosphere.position[2])
    drawText(position=(-1.0, 0.0, 1.0), textString=text)

    text = "velocity : {0:.2f} {1:.2f} {2:.2f}".format(hyrosphere.velocity[0],
                                                       hyrosphere.velocity[1],
                                                       hyrosphere.velocity[2])
    drawText(position=(-1.0, 0.0, 0.8), textString=text)
Exemple #52
0
def specific_angular_momentum(r, v):
    return np.cross(r, v)
        def PlotSet(self, ds, p, dp, speed, force, R, amin, amax,
                        color=None):
                if color is not None:
                        self.COLOR_REACHABLE_SET_LAST= color
                tsamples= 15
                [qnext,dtmp,utmp,tend] = params.ForwardSimulate(p, dp, speed, ds, force)
                print "TEND:",tend,qnext
                tstart = 0.0

                Ndim = p.shape[0]
                poly = []
                
                ### A all possible control input combination
                A = np.vstack((amin,amax)).T
                A = np.array(np.meshgrid(*A)).T.reshape(-1,amin.shape[0])
                M_time = A.shape[0]

                for dt in self.expspace(tstart,tend,tsamples):
                        dt2 = dt*dt*0.5
                        if self.PLOT_TOTAL_REACHABLE_SET:
                                M_speed = 5
                                speedvec = np.linspace(0,speed,M_speed)
                        else:
                                M_speed = 1
                                speedvec=[speed]

                        q = np.zeros((Ndim,M_speed*M_time))
                        for k in range(0,M_speed):
                                for i in range(0,M_time):
                                        control = np.dot(R,A[i])
                                        q[:,i+k*M_time] = p + dt*speedvec[k]*dp + dt2 * force + dt2 * control

                        self.add_points( q.T )

                dt = tend
                dt2 = dt*dt*0.5

                qnext = p+dt*speed*dp+dt2*force
                pnext = p+ds*dp/np.linalg.norm(dp)

                self.arrow_head_size = np.linalg.norm(dt2*force)/5
                self.hw = 0.5*self.arrow_head_size
                self.lw = 0.2*self.arrow_head_size

                self.image.scatter(p[0], p[1], p[3], color='k',
                                s=self.point_size)

                self.image.scatter(pnext[0],pnext[1],pnext[3], 'og', color='g',
                                s=self.point_size)
                self.image.scatter(qnext[0],qnext[1],qnext[3], 'ok',
                                s=self.point_size)

                [qcontrol,qtmp,utmp,dtmp] = params.ForwardSimulate(p, dp, speed, ds, force)

                dq = qcontrol - pnext
                dnp = dp/np.linalg.norm(dp)
                wmove = dq - np.dot(dq,dnp)*dnp

                ds = np.linalg.norm(p-pnext)

                if self.PLOT_PROJECTION_ONTO_REACHABLE_SET:
                        self.PlotPathSegment( pnext, qcontrol)
                        self.image.scatter(qcontrol[0],qcontrol[1],qcontrol[3], 'or',
                                        color='r',
                                        s=self.point_size)

                text_offset_t = ds/10.0
                text_offset_y = -ds/10.0
                text_offset_x = -ds/5.0

                if self.PLOT_SHOW_POINT_LABELS:
                        self.image.text(p[0]-text_offset_x, p[1]-text_offset_y, p[3]-text_offset_t, 
                                        "$p(s)$",
                                        color='black',
                                        fontsize=self.fs)
                        self.image.text(pnext[0]-text_offset_x, pnext[1]-text_offset_y, pnext[3]-text_offset_t,
                                        "$p(s+\\Delta s)$", 
                                        color='black',
                                        fontsize=self.fs)

                dori = np.zeros((Ndim))
                dori[0:2] = np.dot(Rz(p[3]),ex)[0:2]
                dori[0:2] = 0.5*(dori[0:2]/np.linalg.norm(dori[0:2]))
                dori[3] = p[3]

                pathnext = p + 1.5*ds*dp/np.linalg.norm(dp)
                pathlast = p - 0.2*ds*dp/np.linalg.norm(dp)

                self.PlotPathSegment( pathlast, pathnext)

                #arrow0 = self.PlotArrow(p, dt*s*dori, self.orientation_color)
                arrow1 = self.PlotArrow(p+dt2*force, dt*speed*dp, self.tangent_color, ls='dashed')
                arrow1 = self.PlotArrow(p, dt*speed*dp, self.tangent_color)
                arrow2 = self.PlotArrow(p, dt2*force, self.force_color)

                #arrow0 = self.PlotArrow(qnext, dt*s*dori, self.orientation_color)
                arrow2 = self.PlotArrow(p+dt*speed*dp, dt2*force, self.force_color)

                plt.legend([arrow1,arrow2,],
                                ['Velocity Displacement','Wrench Displacement',],
                                fontsize=self.fs,
                                loc=self.loc)
                self.origin = p
                self.tangent = dp

                #draw sphere
                if self.PLOT_SPHERE_SEGMENT:
                        ts1 = acos( np.dot(dp[0:2],ex[0:2])/np.linalg.norm(dp[0:2]))
                        ts2 = acos( np.dot((qnext-p)[0:2],ex[0:2])/np.linalg.norm((qnext-p)[0:2]))

                        toffset = pi/16
                        toffsetz = pi/4
                        ori1 = np.cross(ex[0:2],(dp)[0:2])
                        ori2 = np.cross(ex[0:2],(qnext-p)[0:2])
                        if ori1 < 0:
                                ts1 *= -1
                        if ori2 < 0:
                                ts2 *= -1

                        if ts1 > ts2:
                                tlimU = ts1+toffset
                                tlimL = ts2-2*toffset
                        else:
                                tlimL = ts1-toffset
                                tlimU = ts2+2*toffset

                        u, v = np.mgrid[tlimL:tlimU:10j, 0+toffsetz:np.pi/2+toffsetz/4:10j]
                        x=ds*np.cos(u)*np.sin(v) + p[0]
                        y=ds*np.sin(u)*np.sin(v) + p[1]
                        z=ds*np.cos(v) + p[3]
                        self.image.plot_surface( x, y, z,  rstride=2, cstride=2,
                                        color='c', alpha=0.3, linewidth=2,
                                        edgecolors=np.array((0.5,0.5,0.5,0.5)))

                self.PlotPoly()
                self.PlotPrettify()
Exemple #54
0
def drawCylinder(start, end, radius, color, close=True, nseg=20, mseg=40):

    if np.linalg.norm(start) > 10e-4:
        d = (end - start)
        p = np.cross(start, d)
    else:
        d = end
        p = np.cross([1.0] * 3, d)

    p = p / np.linalg.norm(p)
    p = p * radius

    points = []
    curr_point = p
    alpha = 2.0 * np.pi / nseg

    for i in range(0, nseg):
        points.append(curr_point)
        curr_point = np.dot(rotate_vec(d, alpha), curr_point)

    layers = []
    curr_pos = start
    step = d / (mseg - 1)

    for i in range(0, mseg):
        layer = [point + start + i * step for point in points]
        layers.append(layer)

    quads = []
    for i in range(0, mseg - 1):
        for j in range(0, nseg - 1):
            quads.append([
                layers[i][j], layers[i + 1][j], layers[i + 1][j + 1],
                layers[i][j + 1]
            ])

        join_layer = [
            layers[mseg - 1][0], layers[mseg - 1][nseg - 1],
            layers[0][nseg - 1], layers[0][0]
        ]
        quads.append(join_layer)

    glPushMatrix()
    glBegin(GL_QUADS)
    glColor4f(color[0], color[1], color[2], color[3])

    for quad in quads:
        glVertex3fv(quad[0])
        glVertex3fv(quad[1])
        glVertex3fv(quad[2])
        glVertex3fv(quad[3])

    glEnd()

    if close:
        glBegin(GL_POLYGON)
        for point in layers[0]:
            glVertex3fv(point)
        glEnd()

        glBegin(GL_POLYGON)
        for point in layers[mseg - 1]:
            glVertex3fv(point)
        glEnd()

    glPopMatrix()
def homography(points, last_points):
    stat = 1
    try:
        x1c = points[0, 0, 0]
        y1c = points[0, 0, 1]

        x2c = points[1, 0, 0]
        y2c = points[1, 0, 1]

        x3c = points[2, 0, 0]
        y3c = points[2, 0, 1]

        x4c = points[3, 0, 0]
        y4c = points[3, 0, 1]

        if len(points) > 4:
            fail = points[12, 0, 0]
        if cv2.contourArea(points) > 1658880:
            fail = points[12, 0, 0]
    except:
        x1c = last_points[0, 0, 0]
        y1c = last_points[0, 0, 1]

        x2c = last_points[1, 0, 0]
        y2c = last_points[1, 0, 1]

        x3c = last_points[2, 0, 0]
        y3c = last_points[2, 0, 1]

        x4c = last_points[3, 0, 0]
        y4c = last_points[3, 0, 1]
        stat = 0

    srcPoints = np.array([[x1c, y1c], [x2c, y2c], [x3c, y3c], [x4c, y4c]])
    dstPoints = np.array([[ref_scale, 0], [ref_scale, ref_scale],
                          [0, ref_scale], [0, 0]])

    x1w = ref_scale
    y1w = 0

    x2w = ref_scale
    y2w = ref_scale

    x3w = 0
    y3w = ref_scale

    x4w = 0
    y4w = 0

    p1 = [x1w, y1w, 0, 1]
    p2 = [x2w, y2w, 0, 1]
    p3 = [x3w, y3w, 0, 1]
    p4 = [x4w, y4w, 0, 1]

    l1 = [x1w, y1w, 1, 0, 0, 0, -x1c * x1w, -x1c * y1w, -x1c]
    l2 = [0, 0, 0, x1w, y1w, 1, -y1c * x1w, -y1c * y1w, -y1c]
    l3 = [x2w, y2w, 1, 0, 0, 0, -x2c * x2w, -x2c * y2w, -x2c]
    l4 = [0, 0, 0, x2w, y2w, 1, -y2c * x2w, -y2c * y2w, -y2c]
    l5 = [x3w, y3w, 1, 0, 0, 0, -x3c * x3w, -x3c * y3w, -x3c]
    l6 = [0, 0, 0, x3w, y3w, 1, -y3c * x3w, -y3c * y3w, -y3c]
    l7 = [x4w, y4w, 1, 0, 0, 0, -x4c * x4w, -x4c * y4w, -x4c]
    l8 = [0, 0, 0, x4w, y4w, 1, -y4c * x4w, -y4c * y4w, -y4c]
    A = np.vstack([l1, l2, l3, l4, l5, l6, l7, l8])
    U, S, V = np.linalg.svd(A)
    V = V[8]
    h = V / V[8]
    H = np.reshape(h, (3, 3))

    R = np.dot(np.linalg.inv(K), H)
    c1 = R[:, 0]
    c2 = R[:, 1]
    c3 = R[:, 2]

    h1, h2, h3 = H

    h1 = h1.reshape(3, 1)
    h2 = h2.reshape(3, 1)
    one = np.dot(np.linalg.inv(K), h1)
    two = np.dot(np.linalg.inv(K), h2)
    top = (np.linalg.norm(c1) + np.linalg.norm(c2))
    lam = (top / 2)**(-1)

    Bt = lam * R

    if np.linalg.det(Bt) < 0:
        Bt = Bt * (-1)
    B = Bt

    b1, b2, b3 = B.T
    b1 = b1.reshape(1, 3)
    b2 = b2.reshape(1, 3)
    b3 = b3.reshape(1, 3)

    r1 = b1
    r2 = b2
    r3 = np.cross(r1, r2)
    t = b3

    T = np.concatenate((r1.T, r2.T, r3.T, t.T), axis=1)
    P = np.matmul(K, T)

    return P, H, stat
Exemple #56
0
    def runFilter(self, accMeas, gyroMeas, otherMeas, dT):

        #spool up after initialization
        if (self.timeConstant < self.tcTarget):
            self.timeConstant += .0001 * (self.tcTarget -
                                          self.timeConstant) + .001
        # integrate angular velocity to get
        omega = gyroMeas - self.gyroBias
        # get the magnitude of the angular velocity
        magOmega = np.linalg.norm(omega)
        # recover the axis around which it's spinning
        axis = omega / (magOmega + 1e-13)
        # calculate the angle through which it has spun
        angle = magOmega * dT
        # make a quaternion
        deltaAttPredict = AQ.quatFromAxisAngle(axis, angle)
        # integrate attitude
        self.attitudeEstimate = deltaAttPredict * self.attitudeEstimate
        # unpack attitude into Eulers
        r, p, y = self.attitudeEstimate.asEuler
        # Do we have magnetometer information?
        for ii in otherMeas:
            if (ii[0] == 'mag'):
                # rotate magnetometer reading into earth reference frame
                magReadingInEarth = np.dot(self.attitudeEstimate.asRotMat.T,
                                           ii[1])
                # expected magnetometer reading.
                # Declination can be determined if you know your GPS coordinates.
                # The code in Arducopter does this.
                #earthMagReading = np.array([[.48407,.12519,.8660254]]).T # corresponds to 14.5deg east, 60deg downward inclination
                earthMagReading = ii[
                    2]  # corresponds to 14.5deg east, 60deg downward inclination
                # the z-component of the cross product of these two quantities is proportional to the sine of the yaw error,
                # for small angles, sin(x) ~= x
                yawErr = np.cross(magReadingInEarth.T, earthMagReading.T)
                # update yaw
                y = y + 180. / np.pi * yawErr[0][2]
        # do first slerp for yaw
        updateQuat = AQ.Quaternion(np.array([r, p, y]))
        newAtt = AQ.slerp(self.attitudeEstimate, updateQuat,
                          min(20 * dT / (self.timeConstant + dT), .5))
        # process accel data (if magnitude of acceleration is around 1g)
        r, p, y = newAtt.asEuler
        if (abs(np.linalg.norm(accMeas) - grav) < .5):
            # incorporate accelerometer data
            #updateQuat = attFromAccel(y,accMeas)
            deltaA = np.cross((newAtt.asRotMat * (-gravity)).T, accMeas.T)
            dMagAcc = np.linalg.norm(deltaA)
            if (dMagAcc != 0):
                axisAcc = (1. / dMagAcc) * deltaA
            else:
                axisAcc = np.array([[1., 0., 0.]])
            updateQuat = AQ.quatFromAxisAngle(axisAcc, dMagAcc)
        else:
            # rebuild attitude estimate. May have no change, but 'y' may have magnetometer info incorporated into it, which doesn't care if we're accelerating.
            updateQuat = AQ.Quaternion(np.array([r, p, y]))

        # slerp between integrated and measured attitude
        newAtt = AQ.slerp(newAtt, updateQuat, dT / (self.timeConstant + dT))
        # calculate difference between measurement and integrated for bias calc
        errorQuat = (newAtt * self.attitudeEstimate.inv()).q
        # calculate bias derivative
        # if we think of a quaternion in terms of the axis-angle representation of a rotation, then
        # dividing the vector component of a quaternion by its scalar component gives a vector proportional
        # to tan(angle/2). For small angles this is pretty close to angle/2.

        biasDot = -np.dot(
            np.array([[self.Kbias, 0, 0], [0, self.Kbias, 0],
                      [0, 0, self.Kbias]]), (1. / errorQuat[3]) *
            np.array([[errorQuat[0]], [errorQuat[1]], [errorQuat[2]]]))

        # Update gyro bias
        self.gyroBias = self.gyroBias + dT * biasDot
        # update attitude
        self.attitudeEstimate = newAtt

        return [self.attitudeEstimate, self.gyroBias]
Exemple #57
0
def M(axis, theta):
    return expm(np.cross(np.eye(3), axis / norm(axis) * theta))
    def check_for_stop_signs(self, waypoints, closest_index, goal_index):
        """Checks for a stop sign that is intervening the goal path.

        Checks for a stop sign that is intervening the goal path. Returns a new
        goal index (the current goal index is obstructed by a stop line), and a
        boolean flag indicating if a stop sign obstruction was found.
        
        args:
            waypoints: current waypoints to track. (global frame)
                length and speed in m and m/s.
                (includes speed to track at each x,y location.)
                format: [[x0, y0, v0],
                         [x1, y1, v1],
                         ...
                         [xn, yn, vn]]
                example:
                    waypoints[2][1]: 
                    returns the 3rd waypoint's y position

                    waypoints[5]:
                    returns [x5, y5, v5] (6th waypoint)
                closest_index: index of the waypoint which is closest to the vehicle.
                    i.e. waypoints[closest_index] gives the waypoint closest to the vehicle.
                goal_index (current): Current goal index for the vehicle to reach
                    i.e. waypoints[goal_index] gives the goal waypoint
        variables to set:
            [goal_index (updated), stop_sign_found]: 
                goal_index (updated): Updated goal index for the vehicle to reach
                    i.e. waypoints[goal_index] gives the goal waypoint
                stop_sign_found: Boolean flag for whether a stop sign was found or not
        """
        for i in range(closest_index, goal_index):
            # Check to see if path segment crosses any of the stop lines.
            intersect_flag = False
            for stopsign_fence in self._stopsign_fences:
                wp_1 = np.array(waypoints[i][0:2])
                wp_2 = np.array(waypoints[i + 1][0:2])
                s_1 = np.array(stopsign_fence[0:2])
                s_2 = np.array(stopsign_fence[2:4])

                v1 = np.subtract(wp_2, wp_1)
                v2 = np.subtract(s_1, wp_2)
                sign_1 = np.sign(np.cross(v1, v2))
                v2 = np.subtract(s_2, wp_2)
                sign_2 = np.sign(np.cross(v1, v2))

                v1 = np.subtract(s_2, s_1)
                v2 = np.subtract(wp_1, s_2)
                sign_3 = np.sign(np.cross(v1, v2))
                v2 = np.subtract(wp_2, s_2)
                sign_4 = np.sign(np.cross(v1, v2))

                # Check if the line segments intersect.
                if (sign_1 != sign_2) and (sign_3 != sign_4):
                    intersect_flag = True

                # Check if the collinearity cases hold.
                if (sign_1 == 0) and pointOnSegment(wp_1, s_1, wp_2):
                    intersect_flag = True
                if (sign_2 == 0) and pointOnSegment(wp_1, s_2, wp_2):
                    intersect_flag = True
                if (sign_3 == 0) and pointOnSegment(s_1, wp_1, s_2):
                    intersect_flag = True
                if (sign_4 == 0) and pointOnSegment(s_1, wp_2, s_2):
                    intersect_flag = True

                # If there is an intersection with a stop line, update
                # the goal state to stop before the goal line.
                if intersect_flag:
                    goal_index = i
                    return goal_index, True

        return goal_index, False
Exemple #59
0
def test_fixedjoint():
    # Define the rod for testing
    # Some rod properties. We need them for constructer, they are not used.
    normal1 = np.array([0.0, 1.0, 0.0])
    direction = np.array([1.0, 0.0, 0.0])
    normal2 = np.array([0.0, 0.0, 1.0])
    direction2 = np.array([1.0 / np.sqrt(2), 1.0 / np.sqrt(2), 0.0])
    # direction2 = np.array([0.,1.0,0.])
    base_length = 1
    base_radius = 0.2
    density = 1
    nu = 0.1

    # Youngs Modulus [Pa]
    youngs_modulus = 1e6
    # poisson ratio
    poisson_ratio = 0.5
    shear_modulus = youngs_modulus / (poisson_ratio + 1.0)

    # Origin of the rod
    origin1 = np.array([0.0, 0.0, 0.0])
    origin2 = np.array([1.0, 0.0, 0.0])

    # Number of elements
    n = 2

    # create rod classes
    rod1 = CosseratRod.straight_rod(
        n,
        origin1,
        direction,
        normal1,
        base_length,
        base_radius,
        density,
        nu,
        youngs_modulus,
        shear_modulus=shear_modulus,
    )
    rod2 = CosseratRod.straight_rod(
        n,
        origin2,
        direction2,
        normal2,
        base_length,
        base_radius,
        density,
        nu,
        youngs_modulus,
        shear_modulus=shear_modulus,
    )

    # Rod velocity
    v1 = np.array([-1, 0, 0]).reshape(3, 1)
    v2 = v1 * -1

    rod1.velocity_collection = np.tile(v1, (1, n + 1))
    rod2.velocity_collection = np.tile(v2, (1, n + 1))

    # Stiffness between points
    k = 1e8
    kt = 1e6
    # Damping between two points
    nu = 1

    # Rod indexes
    rod1_index = -1
    rod2_index = 0

    # Compute the free joint forces
    distance = (rod2.position_collection[..., rod2_index] -
                rod1.position_collection[..., rod1_index])
    end_distance = np.linalg.norm(distance)
    if end_distance == 0:
        end_distance = 1
    elasticforce = k * distance
    relative_vel = (rod2.velocity_collection[..., rod2_index] -
                    rod1.velocity_collection[..., rod1_index])
    normal_relative_vel = np.dot(relative_vel, distance) / end_distance
    dampingforce = nu * normal_relative_vel * distance / end_distance
    contactforce = elasticforce - dampingforce

    fxjt = FixedJoint(k, nu, kt)

    fxjt.apply_forces(rod1, rod1_index, rod2, rod2_index)
    fxjt.apply_torques(rod1, rod1_index, rod2, rod2_index)

    assert_allclose(rod1.external_forces[..., rod1_index],
                    contactforce,
                    atol=Tolerance.atol())
    assert_allclose(rod2.external_forces[..., rod2_index],
                    -1 * contactforce,
                    atol=Tolerance.atol())

    linkdirection = (rod2.position_collection[..., rod2_index + 1] -
                     rod2.position_collection[..., rod2_index])

    positiondiff = (rod1.position_collection[..., rod1_index] -
                    rod1.position_collection[..., rod1_index - 1])
    tangent = positiondiff / np.sqrt(np.dot(positiondiff, positiondiff))

    # rod 2 has to be alligned with rod 1
    check1 = (rod1.position_collection[..., rod1_index] +
              rod2.rest_lengths[rod2_index] * tangent)
    check2 = rod2.position_collection[..., rod2_index + 1]
    forcedirection = -kt * (check2 - check1)
    torque = np.cross(linkdirection, forcedirection)

    torque_rod1 = -rod1.director_collection[..., rod1_index] @ torque
    torque_rod2 = rod2.director_collection[..., rod2_index] @ torque

    assert_allclose(rod1.external_torques[..., rod1_index],
                    torque_rod1,
                    atol=Tolerance.atol())
    assert_allclose(rod2.external_torques[..., rod2_index],
                    torque_rod2,
                    atol=Tolerance.atol())
Exemple #60
0
    ax.set_ylim(-.25, .25)
    '''

#plot bloch sphere
# Make data
elev = 10.0
rot = 80.0 / 180 * np.pi
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = 1. * np.outer(np.cos(u), np.sin(v))
y = 1. * np.outer(np.sin(u), np.sin(v))
z = 1. * np.outer(np.ones(np.size(u)), np.cos(v))
#plot the grid lines
a = np.array([-np.sin(elev / 180 * np.pi), 0, np.cos(elev / 180 * np.pi)])
b = np.array([0, 1, 0])
b = +np.cross(a, b) + a * np.dot(a, b)
ax.plot(np.sin(u), np.cos(u), 0, color='k', linestyle='dashed', alpha=0.05)
horiz_front = np.linspace(0, np.pi, 100)
ax.plot(np.sin(horiz_front),
        np.cos(horiz_front),
        0,
        color='k',
        linestyle='dashed',
        alpha=0.05)
vert_front = np.linspace(np.pi / 2, 3 * np.pi / 2, 100)
ax.plot(a[0] * np.sin(u) + b[0] * np.cos(u),
        b[1] * np.cos(u),
        a[2] * np.sin(u) + b[2] * np.cos(u),
        color='k',
        linestyle='dashed',
        alpha=0.05)