def showErrorBars(population, sizes, numTrials): xVals = [] sizeMeans, sizeSDs = [], [] for sampleSize in sizes: xVals.append(sampleSize) trialMeans = [] for t in range(numTrials): sample = random.sample(population, sampleSize) popMean, sampleMean, popSD, sampleSD =\ getMeansAndSDs(population, sample) trialMeans.append(sampleMean) sizeMeans.append(sum(trialMeans) / len(trialMeans)) sizeSDs.append(numpy.std(trialMeans)) print(sizeSDs) numpy.errorbar(xVals, sizeMeans, yerr=1.96 * numpy.array(sizeSDs), fmt='o', label='95% Confidence Interval') numpy.title('Mean Temperature (' + str(numTrials) + ' trials)') numpy.xlabel('Sample Size') numpy.ylabel('Mean') numpy.axhline(y=popMean, color='r', label='Population Mean') numpy.xlim(0, sizes[-1] + 10) numpy.legend()
def plotFrequency(series, sampRate): """ Plot a frequency to a graph """ s = series / (2.**15) p, freqArray = _fastFourier(s, sampRate) np.plot(freqArray / 1000, 10 * pl.log10(p), color='k') np.xlabel('Frequency (kHz)') np.ylabel('Power (dB)') np.plt.show() return
def simAll(drunkKinds, walkLengths, numTrials): styleChoice = styleIterator(('m-', 'b--', 'g-.')) for dClass in drunkKinds: curStyle = styleChoice.nextStyle() print('Starting simulation of', dClass.__name__) means = simDrunk(numTrials, dClass, walkLengths) numpy.plot(walkLengths, means, curStyle, label=dClass.__name__) numpy.title('Mean Distance from Origin (' + str(numTrials) + ' trials)') numpy.xlabel('Number of Steps') numpy.ylabel('Distance from Origin') numpy.legend(loc='best')
def plotTone(series, sampRate): """ Plot a tone to a graph """ # Convert sound array to floating point between -1 to 1 snd = series / (2.**15) timeArray = pl.arange(0, snd.shape[0]) timeArray = timeArray / sampRate timeArray = timeArray * 1000 # scales to milliseconds # Plot the tone graph np.plot(timeArray, snd, color='k') np.ylabel('Amplitude') np.xlabel('Time (ms)') np.plt.show() return
def traceWalk(fieldKinds, numSteps): styleChoice = styleIterator(('b+', 'r^', 'ko')) for fClass in fieldKinds: d = UsualDrunk() f = fClass() f.addDrunk(d, Location(0, 0)) locs = [] for s in range(numSteps): f.moveDrunk(d) locs.append(f.getLoc(d)) xVals, yVals = [], [] for loc in locs: xVals.append(loc.getX()) yVals.append(loc.getY()) curStyle = styleChoice.nextStyle() numpy.plot(xVals, yVals, curStyle, label=fClass.__name__) numpy.title('Spots Visited on Walk (' + str(numSteps) + ' steps)') numpy.xlabel('Steps East/West of Origin') numpy.ylabel('Steps North/South of Origin') numpy.legend(loc='best')
def plotLocs(drunkKinds, numSteps, numTrials): styleChoice = styleIterator(('k+', 'r^', 'mo')) for dClass in drunkKinds: locs = getFinalLocs(numSteps, numTrials, dClass) xVals, yVals = [], [] for loc in locs: xVals.append(loc.getX()) yVals.append(loc.getY()) xVals = numpy.array(xVals) yVals = numpy.array(yVals) meanX = sum(abs(xVals)) / len(xVals) meanY = sum(abs(yVals)) / len(yVals) curStyle = styleChoice.nextStyle() numpy.plot(xVals, yVals, curStyle, label = dClass.__name__ +\ ' mean abs dist = <' + str(meanX) + ', ' + str(meanY) + '>') numpy.title('Location at End of Walks (' + str(numSteps) + ' steps)') numpy.ylim(-1000, 1000) numpy.xlim(-1000, 1000) numpy.xlabel('Steps East/West of Origin') numpy.ylabel('Steps North/South of Origin') numpy.legend(loc='lower center')
# #plt.title('Accuracy for different Momentum for CNN') # plt.ylabel('Error') # #plt.ylabel('Accuracy') # plt.xlabel('Momentum') # plt.show() # #For Batch Size # plt.xticks([1 ,2, 3, 4, 5],['1','10','100','500','1000']) # plt.plot([1 ,2, 3, 4, 5],[1.88155 ,1.25564 ,0.43665 ,1.11511 ,3.02981 ], 'bo', label='Training') # plt.plot([1 ,2, 3, 4, 5],[1.88067 ,1.71583 ,0.63323 ,1.07845 ,2.84858 ], 'go', label='Validation') # plt.axis([0, 5.5, 0.0, 3.2]) # plt.legend(loc=0) # plt.title('Cross-Entropy for different batch sizes for CNN') # #plt.title('Accuracy for different batch sizes for CNN') # plt.ylabel('Error') # #plt.ylabel('Accuracy') # plt.xlabel('Batch Size') # plt.show() #For 3.3 plt.xticks([1, 2, 3], ['[2 16]', '[15 16]', '[30 16]']) plt.plot([1, 2, 3], [0.28542, 0.74748, 0.28542], 'bo', label='Training') plt.plot([1, 2, 3], [0.27924, 0.70883, 0.27924], 'go', label='Validation') plt.axis([0.5, 3.5, 0, 0.8]) plt.legend(loc=0) #plt.title('Cross-Entropy for different number of filters in the first layer of CNN') plt.title('Accuracy for different number of filters in the first layer of CNN') #plt.ylabel('Error') plt.ylabel('Accuracy') plt.xlabel('Number of Units') plt.show()
numpy.hist(means, numBins, color=color, label=legend, weights=[1 / len(means)] * len(means), hatch=style) return getMeanAndStd(means) mean, std = plotMeans(1, 1000000, 19, '1 die', 'b', '') print('Mean of rolling 1 die =', str(mean) + ',', 'Std =', std) mean, std = plotMeans(50, 1000000, 19, 'Mean of 50 dice', 'r', '') print('Mean of rolling 50 dice =', str(mean) + ',', 'Std =', std) numpy.title('Rolling Continuous Dice') numpy.xlabel('Value') numpy.ylabel('Probability') numpy.legend() ##Test CLT # numTrials = 100000 # numSpins = 2000 # game = FairRoulette() # means = [] # for i in range(numTrials): # means.append(findPocketReturn(game, 1, numSpins, # False)[0]) # numpy.hist(means, bins = 19, # weights = [1/len(means)]*len(means)) # numpy.xlabel('Mean Return')
def makeHist(data, title, xlabel, ylabel, bins=20): numpy.hist(data, bins=bins) numpy.title(title) numpy.xlabel(xlabel) numpy.ylabel(ylabel)
def plotDiffs(sampleSizes, diffs, title, label, color='b'): numpy.plot(sampleSizes, diffs, label=label, color=color) numpy.xlabel('Sample Size') numpy.ylabel('% Difference in SD') numpy.title(title) numpy.legend()
for count in np.mslice[1:C]: code_sent = Codewords(count, np.mslice[:]).T F = symbols_est(np.mslice[(sub_block - 1) * n + 1:sub_block * n], fr) H = fading_coeffs(np.mslice[(sub_block - 1) * n + 1:sub_block * n], fr) # Detect_output(count,1) = sum(abs(F - code_sent.*H).^2); %if no equalization (only for OFDM) Detect_output(count, 1).lvalue = sum(abs(F - code_sent) ** np.elpow ** 2) # end # Determine Data_sent from minimum Minimum = min(Detect_output) # end # end # % Demapping Data_out_reshape = np.reshape(Data_out, np.mcat([]), 1) symbols_estimated = np.reshape(Codewords(Data_out_reshape, np.mslice[:]).T, np.mcat([]), Frames) OutputBinaryp = CodewordsIntoBits(symbols_estimated, M, n, k, g, Frames) OutputBinary = np.reshape(OutputBinaryp, 1, np.mcat([])) # % BER Calculation Nbre_error = np.length(np.find(np.reshape(InputBinaryS, 1, np.mcat([])) - OutputBinary != 0)) # Number of errors ber(j).lvalue = Nbre_error / (Frames * m) # number of errors per number of total bit # end SNR # %% BER Plot np.semilogy(EbNo_dB, ber, np.mstring('d-b'), np.mstring('linewidth'), 2) np.hold(np.mstring('on')) np.grid(np.mstring('on')) np.hold(np.mstring('on')) np.xlim(np.mcat([0, 25])) np.ylim(np.mcat([1e-6, 1])) np.xlabel(np.mstring('Eb/N0 in dB')) np.ylabel(np.mstring('BER'))
# In[44]: Soal1 import pandas as choi #melakukan import pada library pandas sebagai arjun laptop = { "Nama Laptop": ['Asus', 'ROG', 'Lenovo', 'Samsung'] } #membuat varibel yang bernama laptop, dan mengisi dataframe nama2 laptop x = Arjun.DataFrame( laptop ) #variabel x membuat DataFrame dari library pandas dan akan memanggil variabel laptop. print(' Arjun Punya Laptop ' + x) #print hasil dari x # In[44]: Soal2 import numpy as Arjun #melakukan import numpy sebagai arjun matrix_x = Arjun.eye( 10) #membuat matrix dengan numpy dengan menggunakan fungsi eye matrix_x #deklrasikan matrix_x yang telah dibuat print(matrix_x) #print matrix_x yang telah dibuat dengan 10x10 # In[44]: Soal3 import matplotlib.pyplot as Arjun #import matploblib sebagai arjun Arjun.plot([1, 1, 7, 4, 0, 2, 1]) #memberikan nilai plot atau grafik pada arjun Arjun.xlabel('Arjun Yuda Firwanda') #memberikan label pada x Arjun.ylabel('1174008') #memberikan label pada y Arjun.show() #print hasil plot berbentuk grafik