def __getitem__(self, key): """ return the subtensors of size "key" for every element in content. (e.g. submatrices [1:5,1:5] of the affine expansion of A) """ it = AffineExpansionStorageContent_Iterator( self._content, flags=["multi_index", "refs_ok"], op_flags=["readonly"]) slices = slice_to_array( self._content[it.multi_index], key, self._component_name_to_basis_component_length, self._component_name_to_basis_component_index) if slices in self._precomputed_slices: return self._precomputed_slices[slices] else: output = _AffineExpansionStorage.__new__( type(self), *self._content.shape) output.__init__(*self._content.shape) while not it.finished: # Slice content and assign output[it.multi_index] = self._do_slicing( self._content[it.multi_index], key) # Increment it.iternext() self._precomputed_slices[slices] = output return output
def _load_dicts(self, full_directory): assert DictIO.exists_file( full_directory, "component_name_to_basis_component_index") self._component_name_to_basis_component_index = DictIO.load_file( full_directory, "component_name_to_basis_component_index", globals={ "ComponentNameToBasisComponentIndexDict": ComponentNameToBasisComponentIndexDict }) assert DictIO.exists_file( full_directory, "component_name_to_basis_component_length") self._component_name_to_basis_component_length = DictIO.load_file( full_directory, "component_name_to_basis_component_length", globals={"OnlineSizeDict": OnlineSizeDict}) it = AffineExpansionStorageContent_Iterator( self._content, flags=["multi_index", "refs_ok"], op_flags=["readonly"]) while not it.finished: if self._component_name_to_basis_component_index is not None: self._content[ it. multi_index]._component_name_to_basis_component_index = self._component_name_to_basis_component_index if self._component_name_to_basis_component_length is not None: self._content[ it. multi_index]._component_name_to_basis_component_length = self._component_name_to_basis_component_length it.iternext()
def load(self, directory, filename): if self._content is not None: # avoid loading multiple times if self._content.size > 0: it = AffineExpansionStorageContent_Iterator( self._content, flags=["multi_index", "refs_ok"], op_flags=["readonly"]) while not it.finished: if self._content[ it. multi_index] is not None: # ... but only if there is at least one element different from None if isinstance(self._content[it.multi_index], AbstractFunctionsList): if len( self._content[it.multi_index] ) > 0: # ... unless it is an empty FunctionsList return False elif isinstance(self._content[it.multi_index], AbstractBasisFunctionsMatrix): if sum( self._content[it.multi_index]. _component_name_to_basis_component_length .values() ) > 0: # ... unless it is an empty BasisFunctionsMatrix return False else: return False it.iternext() # Get full directory name full_directory = Folders.Folder( os.path.join(str(directory), filename)) # Exit in the trivial case of empty affine expansion if self._content.size is 0: return True # Load content item type and shape reference_item = self._load_content_item_type_shape(full_directory) # Initialize iterator it = AffineExpansionStorageContent_Iterator( self._content, flags=["c_index", "multi_index", "refs_ok"]) # Load content self._load_content(reference_item, it, full_directory) # Load dicts self._load_dicts(full_directory) # Reset precomputed slices self._precomputed_slices.clear() self._prepare_trivial_precomputed_slice(reference_item) # Return return True
def save(self, directory, filename): # Get full directory name full_directory = Folders.Folder(os.path.join(str(directory), filename)) full_directory.create() # Export depending on type TypeIO.save_file(self._type, full_directory, "type") assert self._type in ("basis_functions_matrix", "empty", "error_estimation_operators_11", "error_estimation_operators_21", "error_estimation_operators_22", "functions_list", "operators") if self._type in ("basis_functions_matrix", "functions_list"): # Save delayed functions delayed_functions = self._content[self._type] it = NonAffineExpansionStorageContent_Iterator(delayed_functions, flags=["c_index", "multi_index", "refs_ok"], op_flags=["readonly"]) while not it.finished: delayed_function = delayed_functions[it.multi_index] delayed_function.save(full_directory, "delayed_functions_" + str(it.index)) it.iternext() elif self._type == "empty": pass elif self._type in ("error_estimation_operators_11", "error_estimation_operators_21", "error_estimation_operators_22"): # Save delayed functions delayed_function_type = { DelayedBasisFunctionsMatrix: "DelayedBasisFunctionsMatrix", DelayedLinearSolver: "DelayedLinearSolver" } assert len(self._content["delayed_functions"]) is 2 for (index, delayed_functions) in enumerate(self._content["delayed_functions"]): it = NonAffineExpansionStorageContent_Iterator(delayed_functions, flags=["c_index", "refs_ok"], op_flags=["readonly"]) while not it.finished: delayed_function = delayed_functions[it.index] DelayedFunctionsTypeIO.save_file(delayed_function_type[type(delayed_function)], full_directory, "delayed_functions_" + str(index) + "_" + str(it.index) + "_type") DelayedFunctionsProblemNameIO.save_file(delayed_function.get_problem_name(), full_directory, "delayed_functions_" + str(index) + "_" + str(it.index) + "_problem_name") delayed_function.save(full_directory, "delayed_functions_" + str(index) + "_" + str(it.index) + "_content") it.iternext() ErrorEstimationInnerProductIO.save_file(get_reduced_problem_from_error_estimation_inner_product(self._content["inner_product_matrix"]).truth_problem.name(), full_directory, "inner_product_matrix_problem_name") elif self._type == "operators": # Save truth content it = NonAffineExpansionStorageContent_Iterator(self._content["truth_operators"], flags=["c_index", "multi_index", "refs_ok"], op_flags=["readonly"]) while not it.finished: operator = self._content["truth_operators"][it.multi_index] assert isinstance(operator, (AbstractParametrizedTensorFactory, NumericForm)) if isinstance(operator, AbstractParametrizedTensorFactory): problem_name = get_problem_from_parametrized_operator(operator).name() (term, index) = get_term_and_index_from_parametrized_operator(operator) TruthContentItemIO.save_file("ParametrizedTensorFactory", full_directory, "truth_operator_" + str(it.index) + "_type") TruthContentItemIO.save_file((problem_name, term, index), full_directory, "truth_operator_" + str(it.index)) elif isinstance(operator, NumericForm): TruthContentItemIO.save_file("NumericForm", full_directory, "truth_operator_" + str(it.index) + "_type") TruthContentItemIO.save_file(operator, full_directory, "truth_operator_" + str(it.index)) else: raise TypeError("Invalid operator type") it.iternext() assert "truth_operators_as_expansion_storage" in self._content # Save basis functions content assert len(self._content["basis_functions"]) in (0, 1, 2) BasisFunctionsContentLengthIO.save_file(len(self._content["basis_functions"]), full_directory, "basis_functions_length") for (index, basis_functions) in enumerate(self._content["basis_functions"]): BasisFunctionsProblemNameIO.save_file(get_reduced_problem_from_basis_functions(basis_functions).truth_problem.name(), full_directory, "basis_functions_" + str(index) + "_problem_name") BasisFunctionsProblemNameIO.save_file(basis_functions._components_name, full_directory, "basis_functions_" + str(index) + "_components_name") else: raise ValueError("Invalid type")
def load(self, directory, filename): if self._type != "empty": # avoid loading multiple times if self._type in ("basis_functions_matrix", "functions_list"): delayed_functions = self._content[self._type] it = NonAffineExpansionStorageContent_Iterator( delayed_functions, flags=["c_index", "multi_index", "refs_ok"], op_flags=["readonly"]) while not it.finished: if isinstance(delayed_functions[it.multi_index], DelayedFunctionsList): assert self._type == "functions_list" if len( delayed_functions[it.multi_index] ) > 0: # ... unless it is an empty FunctionsList return False elif isinstance(delayed_functions[it.multi_index], DelayedBasisFunctionsMatrix): assert self._type == "basis_functions_matrix" if sum( delayed_functions[it.multi_index]. _component_name_to_basis_component_length. values() ) > 0: # ... unless it is an empty BasisFunctionsMatrix return False else: raise TypeError("Invalid delayed functions") it.iternext() else: return False # Get full directory name full_directory = Folders.Folder(os.path.join(str(directory), filename)) # Detect trivial case assert TypeIO.exists_file(full_directory, "type") imported_type = TypeIO.load_file(full_directory, "type") self._type = imported_type assert self._type in ("basis_functions_matrix", "empty", "error_estimation_operators_11", "error_estimation_operators_21", "error_estimation_operators_22", "functions_list", "operators") if self._type in ("basis_functions_matrix", "functions_list"): # Load delayed functions assert self._type in self._content delayed_functions = self._content[self._type] it = NonAffineExpansionStorageContent_Iterator( delayed_functions, flags=["c_index", "multi_index", "refs_ok"]) while not it.finished: delayed_function = delayed_functions[it.multi_index] delayed_function.load(full_directory, "delayed_functions_" + str(it.index)) it.iternext() elif self._type == "empty": pass elif self._type in ("error_estimation_operators_11", "error_estimation_operators_21", "error_estimation_operators_22"): # Load delayed functions assert "delayed_functions" not in self._content self._content["delayed_functions"] = [ NonAffineExpansionStorageContent_Base(self._shape[0], dtype=object), NonAffineExpansionStorageContent_Base(self._shape[1], dtype=object) ] for (index, delayed_functions) in enumerate( self._content["delayed_functions"]): it = NonAffineExpansionStorageContent_Iterator( delayed_functions, flags=["c_index", "refs_ok"]) while not it.finished: assert DelayedFunctionsTypeIO.exists_file( full_directory, "delayed_functions_" + str(index) + "_" + str(it.index) + "_type") delayed_function_type = DelayedFunctionsTypeIO.load_file( full_directory, "delayed_functions_" + str(index) + "_" + str(it.index) + "_type") assert DelayedFunctionsProblemNameIO.exists_file( full_directory, "delayed_functions_" + str(index) + "_" + str(it.index) + "_problem_name") delayed_function_problem_name = DelayedFunctionsProblemNameIO.load_file( full_directory, "delayed_functions_" + str(index) + "_" + str(it.index) + "_problem_name") delayed_function_problem = get_problem_from_problem_name( delayed_function_problem_name) assert delayed_function_type in ( "DelayedBasisFunctionsMatrix", "DelayedLinearSolver") if delayed_function_type == "DelayedBasisFunctionsMatrix": delayed_function = DelayedBasisFunctionsMatrix( delayed_function_problem.V) delayed_function.init( delayed_function_problem.components) elif delayed_function_type == "DelayedLinearSolver": delayed_function = DelayedLinearSolver() else: raise ValueError("Invalid delayed function") delayed_function.load( full_directory, "delayed_functions_" + str(index) + "_" + str(it.index) + "_content") delayed_functions[it.index] = delayed_function it.iternext() # Load inner product assert ErrorEstimationInnerProductIO.exists_file( full_directory, "inner_product_matrix_problem_name") inner_product_matrix_problem_name = ErrorEstimationInnerProductIO.load_file( full_directory, "inner_product_matrix_problem_name") inner_product_matrix_problem = get_problem_from_problem_name( inner_product_matrix_problem_name) inner_product_matrix_reduced_problem = get_reduced_problem_from_problem( inner_product_matrix_problem) self._content[ "inner_product_matrix"] = inner_product_matrix_reduced_problem._error_estimation_inner_product # Recompute shape assert "delayed_functions_shape" not in self._content self._content["delayed_functions_shape"] = DelayedTransposeShape( (self._content["delayed_functions"][0][0], self._content["delayed_functions"][1][0])) # Prepare precomputed slices self._precomputed_slices.clear() self._prepare_trivial_precomputed_slice() elif self._type == "empty": pass elif self._type == "operators": # Load truth content assert "truth_operators" not in self._content self._content[ "truth_operators"] = NonAffineExpansionStorageContent_Base( self._shape, dtype=object) it = NonAffineExpansionStorageContent_Iterator( self._content["truth_operators"], flags=["c_index", "multi_index", "refs_ok"]) while not it.finished: assert TruthContentItemIO.exists_file( full_directory, "truth_operator_" + str(it.index) + "_type") operator_type = TruthContentItemIO.load_file( full_directory, "truth_operator_" + str(it.index) + "_type") assert operator_type in ("NumericForm", "ParametrizedTensorFactory") if operator_type == "NumericForm": assert TruthContentItemIO.exists_file( full_directory, "truth_operator_" + str(it.index)) value = TruthContentItemIO.load_file( full_directory, "truth_operator_" + str(it.index)) self._content["truth_operators"][ it.multi_index] = NumericForm(value) elif operator_type == "ParametrizedTensorFactory": assert TruthContentItemIO.exists_file( full_directory, "truth_operator_" + str(it.index)) (problem_name, term, index) = TruthContentItemIO.load_file( full_directory, "truth_operator_" + str(it.index)) truth_problem = get_problem_from_problem_name(problem_name) self._content["truth_operators"][ it.multi_index] = truth_problem.operator[term][index] else: raise ValueError("Invalid operator type") it.iternext() assert "truth_operators_as_expansion_storage" not in self._content self._prepare_truth_operators_as_expansion_storage() # Load basis functions content assert BasisFunctionsContentLengthIO.exists_file( full_directory, "basis_functions_length") basis_functions_length = BasisFunctionsContentLengthIO.load_file( full_directory, "basis_functions_length") assert basis_functions_length in (0, 1, 2) assert "basis_functions" not in self._content self._content["basis_functions"] = list() for index in range(basis_functions_length): assert BasisFunctionsProblemNameIO.exists_file( full_directory, "basis_functions_" + str(index) + "_problem_name") basis_functions_problem_name = BasisFunctionsProblemNameIO.load_file( full_directory, "basis_functions_" + str(index) + "_problem_name") assert BasisFunctionsProblemNameIO.exists_file( full_directory, "basis_functions_" + str(index) + "_components_name") basis_functions_components_name = BasisFunctionsProblemNameIO.load_file( full_directory, "basis_functions_" + str(index) + "_components_name") basis_functions_problem = get_problem_from_problem_name( basis_functions_problem_name) basis_functions_reduced_problem = get_reduced_problem_from_problem( basis_functions_problem) basis_functions = basis_functions_reduced_problem.basis_functions if basis_functions_components_name != basis_functions_problem.components: basis_functions = basis_functions[ basis_functions_components_name] self._content["basis_functions"].append(basis_functions) # Recompute shape self._content["basis_functions_shape"] = DelayedTransposeShape( self._content["basis_functions"]) # Reset precomputed slices self._precomputed_slices.clear() self._prepare_trivial_precomputed_slice() else: raise ValueError("Invalid type") return True