Exemple #1
0
def polyadd(a1, a2):
    """
    Find the sum of two polynomials.

    Returns the polynomial resulting from the sum of two input polynomials.
    Each input must be either a poly1d object or a 1D sequence of polynomial
    coefficients, from highest to lowest degree.

    Parameters
    ----------
    a1, a2 : array_like or poly1d object
        Input polynomials.

    Returns
    -------
    out : ndarray or poly1d object
        The sum of the inputs. If either input is a poly1d object, then the
        output is also a poly1d object. Otherwise, it is a 1D array of
        polynomial coefficients from highest to lowest degree.

    See Also
    --------
    poly1d : A one-dimensional polynomial class.
    poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

    Examples
    --------
    >>> np.polyadd([1, 2], [9, 5, 4])
    array([9, 6, 6])

    Using poly1d objects:

    >>> p1 = np.poly1d([1, 2])
    >>> p2 = np.poly1d([9, 5, 4])
    >>> print(p1)
    1 x + 2
    >>> print(p2)
       2
    9 x + 5 x + 4
    >>> print(np.polyadd(p1, p2))
       2
    9 x + 6 x + 6

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
Exemple #2
0
def polysub(a1, a2):
    """
    Difference (subtraction) of two polynomials.

    Given two polynomials `a1` and `a2`, returns ``a1 - a2``.
    `a1` and `a2` can be either array_like sequences of the polynomials'
    coefficients (including coefficients equal to zero), or `poly1d` objects.

    Parameters
    ----------
    a1, a2 : array_like or poly1d
        Minuend and subtrahend polynomials, respectively.

    Returns
    -------
    out : ndarray or poly1d
        Array or `poly1d` object of the difference polynomial's coefficients.

    See Also
    --------
    polyval, polydiv, polymul, polyadd

    Examples
    --------
    .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)

    >>> np.polysub([2, 10, -2], [3, 10, -4])
    array([-1,  0,  2])

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
Exemple #3
0
 def __setitem__(self, key, val):
     ind = self.order - key
     if key < 0:
         raise ValueError("Does not support negative powers.")
     if key > self.order:
         zr = NX.zeros(key - self.order, self.coeffs.dtype)
         self._coeffs = NX.concatenate((zr, self.coeffs))
         ind = 0
     self._coeffs[ind] = val
     return
Exemple #4
0
def dstack(tup):
    """
    Stack arrays in sequence depth wise (along third axis).

    This is equivalent to concatenation along the third axis after 2-D arrays
    of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
    `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
    `dsplit`.

    This function makes most sense for arrays with up to 3 dimensions. For
    instance, for pixel-data with a height (first axis), width (second axis),
    and r/g/b channels (third axis). The functions `concatenate`, `stack` and
    `block` provide more general stacking and concatenation operations.

    Parameters
    ----------
    tup : sequence of arrays
        The arrays must have the same shape along all but the third axis.
        1-D or 2-D arrays must have the same shape.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays, will be at least 3-D.

    See Also
    --------
    stack : Join a sequence of arrays along a new axis.
    vstack : Stack along first axis.
    hstack : Stack along second axis.
    concatenate : Join a sequence of arrays along an existing axis.
    dsplit : Split array along third axis.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.dstack((a,b))
    array([[[1, 2],
            [2, 3],
            [3, 4]]])

    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.dstack((a,b))
    array([[[1, 2]],
           [[2, 3]],
           [[3, 4]]])

    """
    return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
Exemple #5
0
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col, ))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0)
Exemple #6
0
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    stack, hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1)
Exemple #7
0
def kron(a, b):
    """
    Kronecker product of two arrays.

    Computes the Kronecker product, a composite array made of blocks of the
    second array scaled by the first.

    Parameters
    ----------
    a, b : array_like

    Returns
    -------
    out : ndarray

    See Also
    --------
    outer : The outer product

    Notes
    -----
    The function assumes that the number of dimensions of `a` and `b`
    are the same, if necessary prepending the smallest with ones.
    If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`,
    the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`.
    The elements are products of elements from `a` and `b`, organized
    explicitly by::

        kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

    where::

        kt = it * st + jt,  t = 0,...,N

    In the common 2-D case (N=1), the block structure can be visualized::

        [[ a[0,0]*b,   a[0,1]*b,  ... , a[0,-1]*b  ],
         [  ...                              ...   ],
         [ a[-1,0]*b,  a[-1,1]*b, ... , a[-1,-1]*b ]]


    Examples
    --------
    >>> np.kron([1,10,100], [5,6,7])
    array([  5,   6,   7,  50,  60,  70, 500, 600, 700])
    >>> np.kron([5,6,7], [1,10,100])
    array([  5,  50, 500,   6,  60, 600,   7,  70, 700])

    >>> np.kron(np.eye(2), np.ones((2,2)))
    array([[ 1.,  1.,  0.,  0.],
           [ 1.,  1.,  0.,  0.],
           [ 0.,  0.,  1.,  1.],
           [ 0.,  0.,  1.,  1.]])

    >>> a = np.arange(100).reshape((2,5,2,5))
    >>> b = np.arange(24).reshape((2,3,4))
    >>> c = np.kron(a,b)
    >>> c.shape
    (2, 10, 6, 20)
    >>> I = (1,3,0,2)
    >>> J = (0,2,1)
    >>> J1 = (0,) + J             # extend to ndim=4
    >>> S1 = (1,) + b.shape
    >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
    >>> c[K] == a[I]*b[J]
    True

    """
    b = asanyarray(b)
    a = array(a, copy=False, subok=True, ndmin=b.ndim)
    ndb, nda = b.ndim, a.ndim
    if (nda == 0 or ndb == 0):
        return _nx.multiply(a, b)
    as_ = a.shape
    bs = b.shape
    if not a.flags.contiguous:
        a = reshape(a, as_)
    if not b.flags.contiguous:
        b = reshape(b, bs)
    nd = ndb
    if (ndb != nda):
        if (ndb > nda):
            as_ = (1, ) * (ndb - nda) + as_
        else:
            bs = (1, ) * (nda - ndb) + bs
            nd = nda
    result = outer(a, b).reshape(as_ + bs)
    axis = nd - 1
    for _ in range(nd):
        result = concatenate(result, axis=axis)
    wrapper = get_array_prepare(a, b)
    if wrapper is not None:
        result = wrapper(result)
    wrapper = get_array_wrap(a, b)
    if wrapper is not None:
        result = wrapper(result)
    return result
Exemple #8
0
def polyint(p, m=1, k=None):
    """
    Return an antiderivative (indefinite integral) of a polynomial.

    The returned order `m` antiderivative `P` of polynomial `p` satisfies
    :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1`
    integration constants `k`. The constants determine the low-order
    polynomial part

    .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1}

    of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`.

    Parameters
    ----------
    p : array_like or poly1d
        Polynomial to differentiate.
        A sequence is interpreted as polynomial coefficients, see `poly1d`.
    m : int, optional
        Order of the antiderivative. (Default: 1)
    k : list of `m` scalars or scalar, optional
        Integration constants. They are given in the order of integration:
        those corresponding to highest-order terms come first.

        If ``None`` (default), all constants are assumed to be zero.
        If `m = 1`, a single scalar can be given instead of a list.

    See Also
    --------
    polyder : derivative of a polynomial
    poly1d.integ : equivalent method

    Examples
    --------
    The defining property of the antiderivative:

    >>> p = np.poly1d([1,1,1])
    >>> P = np.polyint(p)
    >>> P
    poly1d([ 0.33333333,  0.5       ,  1.        ,  0.        ])
    >>> np.polyder(P) == p
    True

    The integration constants default to zero, but can be specified:

    >>> P = np.polyint(p, 3)
    >>> P(0)
    0.0
    >>> np.polyder(P)(0)
    0.0
    >>> np.polyder(P, 2)(0)
    0.0
    >>> P = np.polyint(p, 3, k=[6,5,3])
    >>> P
    poly1d([ 0.01666667,  0.04166667,  0.16666667,  3. ,  5. ,  3. ])

    Note that 3 = 6 / 2!, and that the constants are given in the order of
    integrations. Constant of the highest-order polynomial term comes first:

    >>> np.polyder(P, 2)(0)
    6.0
    >>> np.polyder(P, 1)(0)
    5.0
    >>> P(0)
    3.0

    """
    m = int(m)
    if m < 0:
        raise ValueError("Order of integral must be positive (see polyder)")
    if k is None:
        k = NX.zeros(m, float)
    k = atleast_1d(k)
    if len(k) == 1 and m > 1:
        k = k[0] * NX.ones(m, float)
    if len(k) < m:
        raise ValueError(
            "k must be a scalar or a rank-1 array of length 1 or >m.")

    truepoly = isinstance(p, poly1d)
    p = NX.asarray(p)
    if m == 0:
        if truepoly:
            return poly1d(p)
        return p
    else:
        # Note: this must work also with object and integer arrays
        y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]]))
        val = polyint(y, m - 1, k=k[1:])
        if truepoly:
            return poly1d(val)
        return val
Exemple #9
0
def bmat(obj, ldict=None, gdict=None):
    """
    Build a matrix object from a string, nested sequence, or array.

    Parameters
    ----------
    obj : str or array_like
        Input data. If a string, variables in the current scope may be
        referenced by name.
    ldict : dict, optional
        A dictionary that replaces local operands in current frame.
        Ignored if `obj` is not a string or `gdict` is `None`.
    gdict : dict, optional
        A dictionary that replaces global operands in current frame.
        Ignored if `obj` is not a string.

    Returns
    -------
    out : matrix
        Returns a matrix object, which is a specialized 2-D array.

    See Also
    --------
    block :
        A generalization of this function for N-d arrays, that returns normal
        ndarrays.

    Examples
    --------
    >>> A = np.mat('1 1; 1 1')
    >>> B = np.mat('2 2; 2 2')
    >>> C = np.mat('3 4; 5 6')
    >>> D = np.mat('7 8; 9 0')

    All the following expressions construct the same block matrix:

    >>> np.bmat([[A, B], [C, D]])
    matrix([[1, 1, 2, 2],
            [1, 1, 2, 2],
            [3, 4, 7, 8],
            [5, 6, 9, 0]])
    >>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
    matrix([[1, 1, 2, 2],
            [1, 1, 2, 2],
            [3, 4, 7, 8],
            [5, 6, 9, 0]])
    >>> np.bmat('A,B; C,D')
    matrix([[1, 1, 2, 2],
            [1, 1, 2, 2],
            [3, 4, 7, 8],
            [5, 6, 9, 0]])

    """
    if isinstance(obj, str):
        if gdict is None:
            # get previous frame
            frame = sys._getframe().f_back
            glob_dict = frame.f_globals
            loc_dict = frame.f_locals
        else:
            glob_dict = gdict
            loc_dict = ldict

        return matrix(_from_string(obj, glob_dict, loc_dict))

    if isinstance(obj, (tuple, list)):
        # [[A,B],[C,D]]
        arr_rows = []
        for row in obj:
            if isinstance(row, N.ndarray):  # not 2-d
                return matrix(concatenate(obj, axis=-1))
            else:
                arr_rows.append(concatenate(row, axis=-1))
        return matrix(concatenate(arr_rows, axis=0))
    if isinstance(obj, N.ndarray):
        return matrix(obj)